用于食管癌的模拟全自动化质子治疗工作流程中的自动勾画方法。
Autodelineation methods in a simulated fully automated proton therapy workflow for esophageal cancer.
作者信息
Populaire Pieter, Marini Beatrice, Poels Kenneth, Svensson Stina, Sterpin Edmond, Fredriksson Albin, Haustermans Karin
机构信息
KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium.
University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium.
出版信息
Phys Imaging Radiat Oncol. 2024 Sep 14;32:100646. doi: 10.1016/j.phro.2024.100646. eCollection 2024 Oct.
BACKGROUND AND PURPOSE
Proton Online Adaptive RadioTherapy (ProtOnART) harnesses the dosimetric advantage of protons and immediately acts upon anatomical changes. Here, we simulate the clinical application of delineation and planning within a ProtOnART-workflow for esophageal cancer. We aim to identify the most appropriate technique for autodelineation and evaluate full automation by replanning on autodelineated contours.
MATERIALS AND METHODS
We evaluated 15 patients who started treatment between 11-2022 and 01-2024, undergoing baseline and three repeat computed tomography (CT) scans in treatment position. Quantitative and qualitative evaluations compared different autodelineation methods. For Organs-at-risk (OAR) deep learning segmentation (DLS), rigid and deformable propagation from baseline to repeat CT-scans were considered. For the clinical target volume (CTV), rigid and three deformable propagation methods (default, heart as controlling structure and with focus region) were evaluated. Adaptive treatment plans with 7 mm (ATP) and 3 mm (ATP) setup robustness were generated using best-performing autodelineated contours. Clinical acceptance of ATPs was evaluated using goals encompassing ground-truth CTV-coverage and OAR-dose.
RESULTS
Deformation was preferred for autodelineation of heart, lungs and spinal cord. DLS was preferred for all other OARs. For CTV, deformation with focus region was the preferred method although the difference with other deformation methods was small. Nominal ATPs passed evaluation goals for 87 % of ATP and 67 % of ATP. This dropped to respectively 2 % and 29 % after robust evaluation. Insufficient CTV-coverage was the main reason for ATP-rejection.
CONCLUSION
Autodelineation aids a ProtOnART-workflow for esophageal cancer. Currently available tools regularly require manual annotations to generate clinically acceptable ATPs.
背景与目的
质子在线自适应放射治疗(ProtOnART)利用了质子的剂量学优势,并能对解剖结构变化立即做出反应。在此,我们模拟了食管癌在ProtOnART工作流程中的勾画和计划的临床应用。我们旨在确定最合适的自动勾画技术,并通过在自动勾画轮廓上重新计划来评估完全自动化程度。
材料与方法
我们评估了15例在2022年11月至2024年1月期间开始治疗的患者,这些患者在治疗体位下接受了基线扫描和三次重复计算机断层扫描(CT)。通过定量和定性评估比较了不同的自动勾画方法。对于危及器官(OAR)的深度学习分割(DLS),考虑了从基线CT扫描到重复CT扫描的刚性和可变形传播。对于临床靶区(CTV),评估了刚性和三种可变形传播方法(默认、以心脏为控制结构和带有聚焦区域)。使用表现最佳的自动勾画轮廓生成了具有7毫米(ATP)和3毫米(ATP)设置鲁棒性的自适应治疗计划。使用包括真实CTV覆盖和OAR剂量的目标来评估ATP的临床可接受性。
结果
对于心脏、肺和脊髓的自动勾画,变形方法更受青睐。对于所有其他OAR,DLS更受青睐。对于CTV,带有聚焦区域的变形是首选方法,尽管与其他变形方法的差异较小。标称ATP在87%的ATP和67%的ATP中通过了评估目标。在鲁棒评估后,这一比例分别降至2%和29%。CTV覆盖不足是ATP被拒绝的主要原因。
结论
自动勾画有助于食管癌的ProtOnART工作流程。目前可用的工具通常需要手动标注才能生成临床可接受的ATP。