Medical Laboratory Center, Xi'an TCM Hospital of Encephalopathy, Xi'an, China.
Medicine (Baltimore). 2024 Oct 25;103(43):e40134. doi: 10.1097/MD.0000000000040134.
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, with limited treatment options. The goal of this study was to use integrated bioinformatic analysis to find possible biomarkers for prognosis and therapeutic targets for hepatitis B (HBV)-associated HCC. Three microarray datasets (GSE84402, GSE121248, and E-GEOD-19665) from patients with HBV-associated HCC were combined and analyzed. We identified differentially expressed genes (DEGs) and performed pathway enrichment analysis. We constructed protein-protein interaction networks to identify hub genes. We identified a total of 374 DEGs, which included 90 up-regulated and 284 down-regulated genes. Pathway enrichment analysis revealed associations with cell cycle, oocyte meiosis, and the p53 signaling pathway for up-regulated DEGs. Twenty hub genes were identified, and 9 of them (ZWINT, MELK, DLGAP5, BIRC5, AURKA, HMMR, CDK1, TTK, and MAD2L1) were validated using the Cancer Genome Atlas data and Kaplan-Meier survival analysis. These genes were significantly associated with a poor prognosis in HCC patients. Our research shows that ZWINT, MELK, DLGAP5, BIRC5, AURKA, HMMR, CDK1, TTK, and MAD2L1 may be useful for predicting how HBV-associated HCC will progress and for finding new ways to treat it. In addition to these further studies are needed to elucidate the functions of the remaining 11 identified hub genes (RRM2, NUSAP1, PBK, CCNB1, CCNB2, BUB1B, NEK2, CENPF, ASPM, TOP2A, and BUB1) in HCC development and progression.
肝细胞癌(HCC)是全球癌症相关死亡的主要原因,治疗选择有限。本研究旨在通过综合生物信息学分析寻找乙型肝炎(HBV)相关 HCC 的预后和治疗靶点的可能生物标志物。我们对来自 HBV 相关 HCC 患者的三个微阵列数据集(GSE84402、GSE121248 和 E-GEOD-19665)进行了合并和分析。我们确定了差异表达基因(DEGs)并进行了途径富集分析。我们构建了蛋白质-蛋白质相互作用网络以识别枢纽基因。我们总共鉴定了 374 个 DEGs,其中包括 90 个上调和 284 个下调基因。途径富集分析显示,上调 DEGs 与细胞周期、卵母细胞减数分裂和 p53 信号通路有关。鉴定出 20 个枢纽基因,其中 9 个(ZWINT、MELK、DLGAP5、BIRC5、AURKA、HMMR、CDK1、TTK 和 MAD2L1)使用癌症基因组图谱数据和 Kaplan-Meier 生存分析进行了验证。这些基因与 HCC 患者的不良预后显著相关。我们的研究表明,ZWINT、MELK、DLGAP5、BIRC5、AURKA、HMMR、CDK1、TTK 和 MAD2L1 可能有助于预测 HBV 相关 HCC 的进展,并为寻找新的治疗方法提供依据。除了这些,还需要进一步研究以阐明其余 11 个鉴定的枢纽基因(RRM2、NUSAP1、PBK、CCNB1、CCNB2、BUB1B、NEK2、CENPF、ASPM、TOP2A 和 BUB1)在 HCC 发展和进展中的功能。