理解处方错误以进行系统优化:与技术相关的错误机制分类。
Understanding prescribing errors for system optimisation: the technology-related error mechanism classification.
机构信息
Centre for Health Systems and Safety Research, Australian Institute of Health Innovation, Macquarie University, Sydney, New South Wales, Australia
Centre for Health Systems and Safety Research, Australian Institute of Health Innovation, Macquarie University, Sydney, New South Wales, Australia.
出版信息
BMJ Health Care Inform. 2024 Nov 2;31(1):e100974. doi: 10.1136/bmjhci-2023-100974.
OBJECTIVES
Technology-related prescribing errors curtail the positive impacts of computerised provider order entry (CPOE) on medication safety. Understanding how technology-related errors (TREs) occur can inform CPOE optimisation. Previously, we developed a classification of the underlying mechanisms of TREs using prescribing error data from two adult hospitals. Our objective was to update the classification using paediatric prescribing error data and to assess the reliability with which reviewers could independently apply the classification.
MATERIALS AND METHODS
Using data on 1696 prescribing errors identified by chart review in 2016 and 2017 at a tertiary paediatric hospital, we identified errors that were technology-related. These errors were investigated to classify their underlying mechanisms using our previously developed classification, and new categories were added based on the data. A two-step process was used to identify and classify TREs involving a review of the error in the CPOE and simulating the error in the CPOE testing environment.
RESULTS
The technology-related error mechanism (TREM) classification comprises six mechanism categories, one contributing factor and 19 subcategories. The categories are as follows: (1) incorrect system configuration or system malfunction, (2) opening or using the wrong patient record, (3) selection errors, (4) construction errors, (5) editing errors, (6) errors that occur when using workflows that differ from a paper-based system (7) contributing factor: use of hybrid systems.
CONCLUSION
TREs remain a critical issue for CPOE. The updated TREM classification provides a systematic means of assessing and monitoring TREs to inform and prioritise system improvements and has now been updated for the paediatric setting.
目的
与技术相关的处方错误限制了计算机化医嘱录入(CPOE)在用药安全方面的积极影响。了解技术相关错误(TRE)的发生方式可以为 CPOE 优化提供信息。此前,我们使用来自两家成人医院的处方错误数据开发了一种 TRE 潜在机制的分类方法。我们的目的是使用儿科处方错误数据更新该分类,并评估审核员独立应用该分类的可靠性。
材料和方法
使用 2016 年和 2017 年在一家三级儿科医院通过图表审查确定的 1696 份处方错误数据,我们确定了与技术相关的错误。这些错误被调查以使用我们之前开发的分类方法对其潜在机制进行分类,并根据数据添加了新类别。使用两步法识别和分类涉及审查 CPOE 中的错误和模拟 CPOE 测试环境中的错误的 TRE。
结果
技术相关错误机制(TREM)分类包括六个机制类别、一个促成因素和 19 个子类别。类别如下:(1)不正确的系统配置或系统故障,(2)打开或使用错误的患者记录,(3)选择错误,(4)构建错误,(5)编辑错误,(6)使用与纸质系统不同的工作流程时发生的错误(7)促成因素:使用混合系统。
结论
TRE 仍然是 CPOE 的一个关键问题。更新的 TREM 分类为评估和监测 TRE 提供了系统方法,为系统改进提供信息并确定优先级,现在已针对儿科环境进行了更新。