Suppr超能文献

通过整合深度学习和分子建模设计突变型异柠檬酸脱氢酶1(mIDH1)抑制剂

design of mIDH1 inhibitors by integrating deep learning and molecular modeling.

作者信息

Sun Dingkang, Xu Lulu, Tong Mengfan, Wei Zhao, Zhang Weitong, Liang Jialong, Liu Xueying, Wang Yuwei

机构信息

College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.

Thyroid and Breast Surgery, General Hospital of Xinjiang Military Comand, Xinjiang, China.

出版信息

Front Pharmacol. 2024 Oct 23;15:1491699. doi: 10.3389/fphar.2024.1491699. eCollection 2024.

Abstract

BACKGROUND

Mutations in the IDH1 gene have been shown to be an important driver in the development of acute myeloid leukemia, gliomas and certain solid tumors, which is a promising target for cancer therapy.

METHODS

Bidirectional recurrent neural network (BRNN) and scaffold hopping methods were used to generate new compounds, which were evaluated by principal components analysis, quantitative estimate of drug-likeness, synthetic accessibility analysis and molecular docking. ADME prediction, molecular docking and molecular dynamics simulations were used to screen candidate compounds and assess their binding affinity and binding stability with mutant IDH1 (mIDH1).

RESULTS

BRNN and scaffold hopping methods generated 3890 and 3680 new compounds, respectively. The molecules generated by the BRNN performed better in terms of molecular diversity, druggability, synthetic accessibility and docking score. From the 3890 compounds generated by the BRNN model, 10 structurally diverse drug candidates with great docking score were preserved. Molecular dynamics simulations showed that the RMSD of the four systems, M1, M2, M3 and M6, remained stable, with local flexibility and compactness similar to the positive drug. The binding free energy results indicated that compound M1 exhibited the best binding properties in all energy aspects and was the best candidate molecule among the 10 compounds.

CONCLUSION

In present study, compounds M1, M2, M3 and M6 generated by BRNN exhibited optimal binding properties. This study is the first attempt to use deep learning to design mIDH1 inhibitors, which provides theoretical guidance for the design of mIDH1 inhibitors.

摘要

背景

IDH1基因的突变已被证明是急性髓系白血病、神经胶质瘤和某些实体瘤发生发展的重要驱动因素,是癌症治疗的一个有前景的靶点。

方法

采用双向递归神经网络(BRNN)和骨架跃迁方法生成新化合物,并通过主成分分析、类药性定量评估、合成可及性分析和分子对接进行评估。利用ADME预测、分子对接和分子动力学模拟筛选候选化合物,并评估它们与突变型IDH1(mIDH1)的结合亲和力和结合稳定性。

结果

BRNN和骨架跃迁方法分别生成了3890个和3680个新化合物。BRNN生成的分子在分子多样性、成药性、合成可及性和对接分数方面表现更好。从BRNN模型生成的3890个化合物中,保留了10个结构多样、对接分数高的候选药物。分子动力学模拟表明,M1、M2、M3和M6这四个系统的RMSD保持稳定,局部柔韧性和紧密性与阳性药物相似。结合自由能结果表明,化合物M1在所有能量方面均表现出最佳的结合特性,是这10个化合物中最佳的候选分子。

结论

在本研究中,BRNN生成的化合物M1、M2、M3和M6表现出最佳的结合特性。本研究首次尝试利用深度学习设计mIDH1抑制剂,为mIDH1抑制剂的设计提供了理论指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f78/11541834/6dcfbb9b9cc9/fphar-15-1491699-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验