Suppr超能文献

使用大型语言模型从非结构化放射报告中提取主要肺部疾病的临床数据。

Extraction of clinical data on major pulmonary diseases from unstructured radiologic reports using a large language model.

机构信息

Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Shihwa Medical Center, Siheung, Korea.

Department of Internal Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea.

出版信息

PLoS One. 2024 Nov 25;19(11):e0314136. doi: 10.1371/journal.pone.0314136. eCollection 2024.

Abstract

Despite significant strides in big data technology, extracting information from unstructured clinical data remains a formidable challenge. This study investigated the utility of large language models (LLMs) for extracting clinical data from unstructured radiological reports without additional training. In this retrospective study, 1800 radiologic reports, 600 from each of the three university hospitals, were collected, with seven pulmonary outcomes defined. Three pulmonology-trained specialists discerned the presence or absence of diseases. Data extraction from the reports was executed using Google Gemini Pro 1.0, OpenAI's GPT-3.5, and GPT-4. The gold standard was predicated on agreement between at least two pulmonologists. This study evaluated the performance of the three LLMs in diagnosing seven pulmonary diseases (active tuberculosis, emphysema, interstitial lung disease, lung cancer, pleural effusion, pneumonia, and pulmonary edema) utilizing chest radiography and computed tomography scans. All models exhibited high accuracy (0.85-1.00) for most conditions. GPT-4 consistently outperformed its counterparts, demonstrating a sensitivity of 0.71-1.00; specificity of 0.89-1.00; and accuracy of 0.89 and 0.99 across both modalities, thus underscoring its superior capability in interpreting radiological reports. Notably, the accuracy of pleural effusion and emphysema on chest radiographs and pulmonary edema on chest computed tomography scans reached 0.99. The proficiency of LLMs, particularly GPT-4, in accurately classifying unstructured radiological data hints at their potential as alternatives to the traditional manual chart reviews conducted by clinicians.

摘要

尽管在大数据技术方面取得了重大进展,但从非结构化临床数据中提取信息仍然是一个艰巨的挑战。本研究调查了大型语言模型(LLM)在无需额外培训的情况下从非结构化放射报告中提取临床数据的效用。在这项回顾性研究中,收集了 1800 份放射报告,每个大学医院 600 份,定义了 7 个肺部结果。三位肺病学专家辨别疾病的存在或不存在。使用 Google Gemini Pro 1.0、OpenAI 的 GPT-3.5 和 GPT-4 从报告中提取数据。金标准是基于至少两位肺病专家的一致意见。本研究评估了三种 LLM 在使用胸部 X 光和计算机断层扫描诊断七种肺部疾病(活动性肺结核、肺气肿、间质性肺病、肺癌、胸腔积液、肺炎和肺水肿)中的性能。所有模型对大多数疾病的准确率都很高(0.85-1.00)。GPT-4 的表现始终优于其同类产品,表现出 0.71-1.00 的敏感性、0.89-1.00 的特异性以及两种模式下的 0.89 和 0.99 的准确性,从而突出了其在解释放射报告方面的卓越能力。值得注意的是,胸腔积液和肺气肿在胸部 X 光片以及肺水肿在胸部计算机断层扫描上的准确率达到了 0.99。LLM 的熟练程度,特别是 GPT-4,在准确分类非结构化放射数据方面的表现表明它们有潜力替代临床医生进行的传统手动图表审查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/420b/11588275/7595d710e0fa/pone.0314136.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验