Govta Nikolai, Govta Liubov, Sela Hanan, Peleg Gadi, Distelfeld Assaf, Fahima Tzion, Beckles Diane M, Krugman Tamar
Department of Evolutionary and Environmental Biology, and Institute of Evolution, University of Haifa, Haifa, Israel.
PhenoRoot Ltd., Rehovot, Israel.
Plant Cell Environ. 2025 Apr;48(4):2835-2855. doi: 10.1111/pce.15416. Epub 2025 Jan 30.
Our aim was to elucidate mechanisms underlying nitrogen (N)-deficiency tolerance in bread wheat (cultivar Ruta), conferred by a wild emmer wheat QTL (WEW; IL99). We hypothesised that the tolerance in IL99 is driven by enhanced N-uptake through modification of root system architecture (RSA) underscored by transcriptome modifications. Severe N-deficiency (0.1 N for 26 days) triggered significantly higher plasticity in IL99 compared to Ruta by modifying 16 RSA traits; nine of which were IL99-specific. The change in root growth in IL99 was collectively characterised by a transition in root orientation from shallow to steep, increased root number and length, and denser networks, enabling nutrient acquisition from a larger volume and deeper soil layers. Gene ontology and KEGG-enrichment analyses highlighted IL99-specific pathways and candidate genes elevated under N-deficiency. This included Jasmonic acid metabolism, a key hormone mediating RSA plasticity (AOS1, TIFY, MTB2, MYC2), and lignification-mediated root strengthening (CYP73A, 4CL). 'N-metabolism' was identified as a main shared pathway to IL99 and Ruta, with enhanced nitrate uptake predominant in IL99 (NRT2.4), while remobilisation was the main strategy in Ruta (NRT2.3). These findings provide novel insights into wheat plasticity response underlying tolerance to N-deficiency and demonstrate the potential of WEW for improving N-uptake under suboptimal conditions.
我们的目标是阐明普通小麦(品种鲁塔)中由野生二粒小麦QTL(野生二粒小麦;IL99)赋予的耐氮(N)缺乏机制。我们假设IL99中的耐受性是通过转录组修饰强调的根系结构(RSA)改变而增强的氮吸收驱动的。与鲁塔相比,严重氮缺乏(26天0.1 N)通过改变16个RSA性状,使IL99具有显著更高的可塑性;其中9个是IL99特有的。IL99根系生长的变化共同特征是根系方向从浅到陡的转变、根数量和长度增加以及网络更密集,从而能够从更大体积和更深土层获取养分。基因本体和KEGG富集分析突出了在氮缺乏条件下升高的IL99特异性途径和候选基因。这包括茉莉酸代谢,这是一种介导RSA可塑性的关键激素(AOS1、TIFY、MTB2、MYC2),以及木质化介导的根系强化(CYP73A、4CL)。“氮代谢”被确定为IL99和鲁塔的主要共同途径,IL99中主要是硝酸盐吸收增强(NRT2.4),而鲁塔的主要策略是再利用(NRT2.3)。这些发现为小麦对氮缺乏耐受性的可塑性反应提供了新见解,并证明了野生二粒小麦在次优条件下改善氮吸收的潜力。