一种基于机器学习的影像组学方法,用于使用Q-Dixon磁共振成像区分髌股关节骨关节炎与非髌股关节骨关节炎。

A machine learning-based radiomics approach for differentiating patellofemoral osteoarthritis from non-patellofemoral osteoarthritis using Q-Dixon MRI.

作者信息

Lyu Liangjing, Ren Jing, Lu Wenjie, Zhong Jingyu, Song Yang, Li Yongliang, Yao Weiwu

机构信息

Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

MR Research Collaboration Team, Siemens Healthineers Ltd., Shanghai, China.

出版信息

Front Sports Act Living. 2025 Jan 17;7:1535519. doi: 10.3389/fspor.2025.1535519. eCollection 2025.

Abstract

This prospective diagnostic study aimed to assess the utility of machine learning-based quadriceps fat pad (QFP) radiomics in distinguishing patellofemoral osteoarthritis (PFOA) from non-PFOA using Q-Dixon MRI in patients presenting with anterior knee pain. This diagnostic accuracy study retrospectively analyzed data from 215 patients (mean age: 54.2 ± 11.3 years; 113 women). Three predictive models were evaluated: a proton density-weighted image model, a fat fraction model, and a merged model. Feature selection was conducted using analysis of variance, and logistic regression was applied for classification. Data were collected from training, internal, and external test cohorts. Radiomics features were extracted from Q-Dixon MRI sequences to distinguish PFOA from non-PFOA. The diagnostic performance of the three models was compared using the area under the curve (AUC) values analyzed with the Delong test. In the training set (109 patients) and internal test set (73 patients), the merged model exhibited optimal performance, with AUCs of 0.836 [95% confidence interval (CI): 0.762-0.910] and 0.826 (95% CI: 0.722-0.929), respectively. In the external test set (33 patients), the model achieved an AUC of 0.885 (95% CI: 0.768-1.000), with sensitivity and specificity values of 0.833 and 0.933, respectively ( < 0.001). Fat fraction features exhibited a stronger predictive value than shape-related features. Machine learning-based QFP radiomics using Q-Dixon MRI accurately distinguishes PFOA from non-PFOA, providing a non-invasive diagnostic approach for patients with anterior knee pain.

摘要

这项前瞻性诊断研究旨在评估基于机器学习的股四头肌脂肪垫(QFP)放射组学在使用Q-Dixon MRI区分髌股关节炎(PFOA)与非PFOA方面的效用,研究对象为出现前膝痛的患者。这项诊断准确性研究回顾性分析了215例患者(平均年龄:54.2±11.3岁;113名女性)的数据。评估了三种预测模型:质子密度加权图像模型、脂肪分数模型和合并模型。使用方差分析进行特征选择,并应用逻辑回归进行分类。数据收集自训练队列、内部测试队列和外部测试队列。从Q-Dixon MRI序列中提取放射组学特征以区分PFOA与非PFOA。使用通过德龙检验分析的曲线下面积(AUC)值比较三种模型的诊断性能。在训练集(109例患者)和内部测试集(73例患者)中,合并模型表现出最佳性能,AUC分别为0.836 [95%置信区间(CI):0.762 - 0.910]和0.826(95% CI:0.722 - 0.929)。在外部测试集(33例患者)中,该模型的AUC为0.885(95% CI:0.768 - 1.000),敏感性和特异性值分别为0.833和0.933(P < 0.001)。脂肪分数特征比形状相关特征表现出更强的预测价值。使用Q-Dixon MRI的基于机器学习的QFP放射组学能够准确区分PFOA与非PFOA,为前膝痛患者提供了一种非侵入性诊断方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9695/11782249/002250a6d87f/fspor-07-1535519-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索