机器学习衍生的衰弱指数在预测经皮冠状动脉介入治疗患者结局中的开发与验证

Development and validation of machine learning-derived frailty index in predicting outcomes of patients undergoing percutaneous coronary intervention.

作者信息

Soong John T Y, Tan L F, Soh Rodney Y H, He W B, Djohan Andie H, Sim H W, Yeo T C, Tan H C, Chan Mark Y Y, Sia C H, Feng M L

机构信息

Yong Loo Lin School of Medicine, National University Singapore, Department of Medicine, National University Hospital, Singapore.

Department of Medicine, National University Hospital, Singapore, Alexandra Hospital, Singapore.

出版信息

Int J Cardiol Heart Vasc. 2024 Sep 21;55:101511. doi: 10.1016/j.ijcha.2024.101511. eCollection 2024 Dec.

Abstract

INTRODUCTION

Frailty is associated with increased mortality in patients with percutaneous coronary intervention (PCI). Existing operationalized frailty measurement tools are limited and require resource intensive process. We developed and validated a tool to identify and stratify frailty using collected data for patients who underwent PCI and explored its predictive power to predict adverse clinical outcomes post PCI.

METHODS

Between 2014 and 2015, 1,732 patients who underwent semi-urgent or elective PCI in a tertiary centre were included. Variables including demographics, co-morbidities, investigations and clinical outcomes to 33 ± 37 months were analysed. Logistic regression model and Extreme Gradient Boosting (XGBoost) machine learning model were constructed to identify predictors of adverse clinical outcomes post PCI. The final models' predicted probabilities were assessed with area under receiver operating characteristic curve (AUC).

RESULTS

With model analysis, frailty index (FI), age and gender were the 3 most important features for adverse clinical outcomes prediction, with FI contributing the most. After adjustment, the odds of FI to predict cardiac death and in-hospital death post PCI remained significant [1.94 (95 %CI1.79-2.10); p < 0.001, 2.04(95 %CI 1.87-2.23); p < 0.001 respectively]. The XGBoost machine learning models improved predictive power for cardiac death [AUC 0.83(95 %CI 0.80-0.86)] and in hospital death [AUC 0.83(95 %CI 0.80-0.86)] post PCI compared to logistic regression models.

CONCLUSION

The resultant model developed using novel machine learning methodologies had good predictive power for significant clinical outcomes post PCI with potential to be automated within hospital information systems.

摘要

引言

衰弱与经皮冠状动脉介入治疗(PCI)患者的死亡率增加相关。现有的可操作的衰弱测量工具有限,且需要耗费大量资源。我们开发并验证了一种工具,用于使用接受PCI治疗患者的收集数据来识别和分层衰弱,并探讨其预测PCI术后不良临床结局的能力。

方法

纳入2014年至2015年间在一家三级中心接受半紧急或择期PCI治疗的1732例患者。分析了包括人口统计学、合并症、检查以及至33±37个月的临床结局等变量。构建逻辑回归模型和极端梯度提升(XGBoost)机器学习模型,以识别PCI术后不良临床结局的预测因素。使用受试者操作特征曲线下面积(AUC)评估最终模型的预测概率。

结果

通过模型分析,衰弱指数(FI)、年龄和性别是预测不良临床结局的3个最重要特征,其中FI贡献最大。调整后,FI预测PCI术后心源性死亡和住院死亡的比值仍然显著[分别为1.94(95%CI 1.79 - 2.10);p < 0.001,2.04(95%CI 1.87 - 2.23);p < 0.001]。与逻辑回归模型相比,XGBoost机器学习模型提高了PCI术后心源性死亡[AUC 0.83(95%CI 0.80 - 0.86)]和住院死亡[AUC 0.83(95%CI 0.80 - 0.86)]的预测能力。

结论

使用新型机器学习方法开发的最终模型对PCI术后的重大临床结局具有良好的预测能力,并且有可能在医院信息系统中实现自动化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc46/11795679/c4c18e739fe0/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索