深度学习驱动的单导联心电图分类:一种用于综合心脏诊断的快速方法。
Deep Learning-Driven Single-Lead ECG Classification: A Rapid Approach for Comprehensive Cardiac Diagnostics.
作者信息
Ezz Mohamed
机构信息
Department of Computer Sciences, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia.
出版信息
Diagnostics (Basel). 2025 Feb 6;15(3):384. doi: 10.3390/diagnostics15030384.
: This study aims to address the critical need for accessible, early, and accurate cardiac di-agnostics, especially in resource-limited or remote settings. By shifting focus from traditional multi-lead ECG analysis to single-lead ECG data, this research explores the potential of advanced deep learning models for classifying cardiac conditions, including Nor-mal, Abnormal, Previous Myocardial Infarction (PMI), and Myocardial Infarction (MI). : Five state-of-the-art deep learning architectures-Inception, DenseNet201, MobileNetV2, NASNetLarge, and VGG16-were systematically evaluated on individual ECG leads. Key performance metrics, such as model accuracy, inference time, and size, were analyzed to determine the optimal configurations for practical applications. : VGG16 emerged as the most accurate model, achieving an F1-score of 98.11% on lead V4 with a prediction time of 4.2 ms and a size of 528 MB, making it suitable for high-precision clinical settings. MobileNetV2, with a compact size of 13.4 MB, offered a balanced performance, achieving a 97.24% F1-score with a faster inference time of 3.2 ms, positioning it as an ideal candidate for real-time monitoring and telehealth applications. : This study bridges a critical gap in cardiac diagnostics by demonstrating the feasibility of lightweight, scalable, single-lead ECG analysis using advanced deep learning models. The findings pave the way for deploying portable diagnostic tools across diverse settings, enhancing the accessibility and efficiency of cardiac care globally.
本研究旨在满足对可及、早期且准确的心脏诊断的迫切需求,特别是在资源有限或偏远地区。通过将重点从传统的多导联心电图分析转向单导联心电图数据,本研究探索了先进的深度学习模型对心脏疾病进行分类的潜力,这些疾病包括正常、异常、陈旧性心肌梗死(PMI)和心肌梗死(MI)。
对Inception、DenseNet201、MobileNetV2、NASNetLarge和VGG16这五种最先进的深度学习架构在单个心电图导联上进行了系统评估。分析了模型准确性、推理时间和大小等关键性能指标,以确定实际应用的最佳配置。
VGG16成为最准确的模型,在V4导联上F1分数达到98.11%,预测时间为4.2毫秒,大小为528MB,适用于高精度临床环境。MobileNetV2大小紧凑,为13.4MB,性能平衡,F1分数为97.24%,推理时间更快,为3.2毫秒,使其成为实时监测和远程医疗应用的理想选择。
本研究通过展示使用先进深度学习模型进行轻量级、可扩展的单导联心电图分析的可行性,填补了心脏诊断中的关键空白。研究结果为在不同环境中部署便携式诊断工具铺平了道路,提高了全球心脏护理的可及性和效率。