具有弯曲腹侧和附着边缘轮廓的光滑瓣叶促进组织工程心脏瓣膜的适应性重塑:一项计算机模拟研究。
Smooth leaflets with curved belly and attachment edge profiles promote adaptive remodeling in tissue-engineered heart valves: an in silico study.
作者信息
Visser Valery L, Motta Sarah E, Hoerstrup Simon P, Baaijens Frank P T, Loerakker Sandra, Emmert Maximilian Y
机构信息
Institute for Regenerative Medicine, University of Zürich, Zurich, Switzerland.
Wyss Zürich, University and ETH Zürich, Zurich, Switzerland.
出版信息
Biomech Model Mechanobiol. 2025 Jun;24(3):811-828. doi: 10.1007/s10237-025-01937-8. Epub 2025 Apr 4.
Tissue-engineered heart valves (TEHVs) are promising valve replacements due to their potential to regenerate into living heart valves, capable of growth and adaptation. Previous TEHVs showed promising results, but often developed progressive leaflet retraction in the long term. In a prior proof-of-concept study, we demonstrated that a novel geometry with more native-like mechanical behavior could give rise to more adaptive remodeling, thereby minimizing leaflet retraction in vivo. In the current study, we aimed to systematically analyze the impact of TEHV geometry on in vivo remodeling under both pulmonary and aortic conditions. Using a bio-inspired in silico framework, we predicted cell-driven, mechano-mediated remodeling in TEHVs post-implantation. Two parameterized valve designs were evaluated under both pulmonary and aortic pressure conditions. The results indicate that a valve design with smooth leaflets, a curved belly profile, and medium to wide attachment edge effectively minimizes stress concentrations and reduces the risk of valve insufficiency in both conditions. Additionally, this design should be tailored to specific hemodynamic conditions to prevent retraction in pulmonary applications and excessive stress concentrations in aortic applications. These insights provide essential guidelines for optimizing TEHV designs, aiming to promote functional remodeling and maintain valve functionality over time, thereby advancing the development of next-generation TEHVs with enhanced long-term outcomes.
组织工程心脏瓣膜(TEHVs)因其具有再生为有生命的心脏瓣膜、能够生长和适应的潜力,是很有前景的瓣膜替代物。先前的组织工程心脏瓣膜显示出了有前景的结果,但长期来看往往会出现渐进性瓣叶回缩。在之前的一项概念验证研究中,我们证明了一种具有更接近天然机械行为的新型几何形状能够引发更多适应性重塑,从而在体内将瓣叶回缩降至最低。在当前研究中,我们旨在系统分析组织工程心脏瓣膜几何形状在肺动脉和主动脉条件下对体内重塑的影响。我们使用一个受生物启发的计算机模拟框架,预测了植入后组织工程心脏瓣膜中细胞驱动、机械介导的重塑。在肺动脉和主动脉压力条件下评估了两种参数化瓣膜设计。结果表明,一种具有光滑瓣叶、弯曲腹部轮廓以及中等至较宽附着边缘的瓣膜设计在两种条件下均能有效将应力集中降至最低,并降低瓣膜功能不全的风险。此外,这种设计应根据特定的血流动力学条件进行调整,以防止在肺动脉应用中出现回缩以及在主动脉应用中出现过度应力集中。这些见解为优化组织工程心脏瓣膜设计提供了重要指导方针,旨在促进功能性重塑并长期维持瓣膜功能,从而推动具有更好长期效果的下一代组织工程心脏瓣膜的发展。