我们是如何走到这一步的?人工智能在生物网络和序列中的应用。
How did we get there? AI applications to biological networks and sequences.
作者信息
Anteghini Marco, Gualdi Francesco, Oliva Baldo
机构信息
BioFolD Unit, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy; Visual and Data-Centric Computing, Zuse Institut Berlin, Berlin, Germany.
Structural Bioinformatics Lab, Universitat Pompeu Fabra, Barcelona, Spain; Istituto dalle Molle di Studi sull'Intelligenza Artificiale, USI/SUPSI (Università Svizzera Italiana/Scuola Universitaria Professionale Svizzera Italiana) Lugano, Switzerland.
出版信息
Comput Biol Med. 2025 May;190:110064. doi: 10.1016/j.compbiomed.2025.110064. Epub 2025 Apr 3.
The rapidly advancing field of artificial intelligence (AI) has transformed numerous scientific domains, including biology, where a vast and complex volume of data is available for analysis. This paper provides a comprehensive overview of the current state of AI-driven methodologies in genomics, proteomics, and systems biology. We discuss how machine learning algorithms, particularly deep learning models, have enhanced the accuracy and efficiency of embedding sequences, motif discovery, and the prediction of gene expression and protein structure. Additionally, we explore the integration of AI in the embedding and analysis of biological networks, including protein-protein interaction networks and multi-layered networks. By leveraging large-scale biological data, AI techniques have enabled unprecedented insights into complex biological processes and disease mechanisms. This work underlines the potential of applying AI to complex biological data, highlighting current applications and suggesting directions for future research to further explore AI in this rapidly evolving field.
迅速发展的人工智能(AI)领域已经改变了众多科学领域,包括生物学领域,在生物学领域有大量复杂的数据可供分析。本文全面概述了人工智能驱动的方法在基因组学、蛋白质组学和系统生物学中的当前状态。我们讨论了机器学习算法,特别是深度学习模型,如何提高了嵌入序列、基序发现以及基因表达和蛋白质结构预测的准确性和效率。此外,我们还探讨了人工智能在生物网络(包括蛋白质 - 蛋白质相互作用网络和多层网络)的嵌入和分析中的整合。通过利用大规模生物数据,人工智能技术使人们能够以前所未有的方式洞察复杂的生物过程和疾病机制。这项工作强调了将人工智能应用于复杂生物数据的潜力,突出了当前的应用,并为未来研究指明了方向,以便在这个快速发展的领域进一步探索人工智能。