文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过对整数线性规划目标函数进行随机扰动来寻找多个最优解

Finding Multiple Optimal Solutions to an Integer Linear Program by Random Perturbations of Its Objective Function.

作者信息

Schulhof Noah, Sukprasert Pattara, Ruppin Eytan, Khuller Samir, Schäffer Alejandro A

机构信息

Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Department of Computer Science, Northwestern University, Evanston, IL 60201, USA.

出版信息

Algorithms. 2025 Mar;18(3). doi: 10.3390/a18030140. Epub 2025 Mar 4.


DOI:10.3390/a18030140
PMID:40190723
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11970949/
Abstract

Integer linear programs (ILPs) and mixed integer programs (MIPs) often have multiple distinct optimal solutions, yet the widely used Gurobi optimization solver returns certain solutions at disproportionately high frequencies. This behavior is disadvantageous, as, in fields such as biomedicine, the identification and analysis of distinct optima yields valuable domain-specific insights that inform future research directions. In the present work, we introduce MORSE (Multiple Optima via Random Sampling and careful choice of the parameter Epsilon), a randomized, parallelizable algorithm to efficiently generate multiple optima for ILPs. MORSE maps multiplicative perturbations to the coefficients in an instance's objective function, generating a modified instance that retains an optimum of the original problem. We formalize and prove the above claim in some practical conditions. Furthermore, we prove that for 0/1 selection problems, MORSE finds each distinct optimum with equal probability. We evaluate MORSE using two measures; the number of distinct optima found in independent runs, and the diversity of the list (with repetitions) of solutions by average pairwise Hamming distance and Shannon entropy. Using these metrics, we provide empirical results demonstrating that MORSE outperforms the Gurobi method and unweighted variations of the MORSE method on a set of 20 Mixed Integer Programming Library (MIPLIB) instances and on a combinatorial optimization problem in cancer genomics.

摘要

整数线性规划(ILP)和混合整数规划(MIP)通常有多个不同的最优解,但广泛使用的Gurobi优化求解器却以极高的频率返回某些特定的解。这种行为是不利的,因为在生物医药等领域,识别和分析不同的最优解能产生有价值的特定领域见解,为未来的研究方向提供参考。在本研究中,我们引入了MORSE(通过随机采样和精心选择参数ε生成多个最优解),这是一种随机化、可并行化的算法,用于有效地为整数线性规划生成多个最优解。MORSE将乘法扰动映射到实例目标函数中的系数上,生成一个保留原始问题最优解的修改实例。我们在一些实际条件下对上述断言进行了形式化并加以证明。此外,我们证明了对于0/1选择问题,MORSE以相等的概率找到每个不同的最优解。我们使用两种度量来评估MORSE:在独立运行中找到的不同最优解的数量,以及通过平均成对汉明距离和香农熵来衡量的解列表(允许重复)的多样性。使用这些指标,我们给出了实证结果,表明在一组20个混合整数规划库(MIPLIB)实例以及一个癌症基因组学的组合优化问题上,MORSE优于Gurobi方法和MORSE方法的无加权变体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/3574a96e38ea/nihms-2068653-f0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/6b8be3013b19/nihms-2068653-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/f58fc0b629da/nihms-2068653-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/11052bed327c/nihms-2068653-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/8d7b7f4c34fa/nihms-2068653-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/f4c188cdd4dd/nihms-2068653-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/f7cdba656954/nihms-2068653-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/47d40530bb41/nihms-2068653-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/3b7556029328/nihms-2068653-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/43c28c286833/nihms-2068653-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/5dfe9a1f31a5/nihms-2068653-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/5d90d17e2ed0/nihms-2068653-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/f6f00fca15f9/nihms-2068653-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/48d60846ab3b/nihms-2068653-f0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/b429c8faea2c/nihms-2068653-f0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/3574a96e38ea/nihms-2068653-f0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/6b8be3013b19/nihms-2068653-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/f58fc0b629da/nihms-2068653-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/11052bed327c/nihms-2068653-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/8d7b7f4c34fa/nihms-2068653-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/f4c188cdd4dd/nihms-2068653-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/f7cdba656954/nihms-2068653-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/47d40530bb41/nihms-2068653-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/3b7556029328/nihms-2068653-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/43c28c286833/nihms-2068653-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/5dfe9a1f31a5/nihms-2068653-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/5d90d17e2ed0/nihms-2068653-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/f6f00fca15f9/nihms-2068653-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/48d60846ab3b/nihms-2068653-f0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/b429c8faea2c/nihms-2068653-f0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/11970949/3574a96e38ea/nihms-2068653-f0019.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索