用于体外和体内神经应用的柔性3D折纸探针

Flexible 3D Kirigami Probes for In Vitro and In Vivo Neural Applications.

作者信息

Jung Marie, Abu Shihada Jamal, Decke Simon, Koschinski Lina, Graff Peter Severin, Maruri Pazmino Sebastián, Höllig Anke, Koch Henner, Musall Simon, Offenhäusser Andreas, Rincón Montes Viviana

机构信息

Bioelectronics, Institute of Biological Information Processing-3, Forschungszentrum Jülich, Jülich, Germany.

Department of Physics, RWTH Aachen University, Aachen, Germany.

出版信息

Adv Mater. 2025 Jun;37(24):e2418524. doi: 10.1002/adma.202418524. Epub 2025 Apr 14.

Abstract

3D microelectrode arrays (MEAs) are gaining popularity as brain-machine interfaces and platforms for studying electrophysiological activity. Interactions with neural tissue depend on the electrochemical, mechanical, and spatial features of the recording platform. While planar or protruding 2D MEAs are limited in their ability to capture neural activity across layers, existing 3D platforms still require advancements in manufacturing scalability, spatial resolution, and tissue integration. In this work, a customizable, scalable, and straightforward approach to fabricate flexible 3D kirigami MEAs containing both surface and penetrating electrodes, designed to interact with the 3D space of neural tissue, is presented. These novel probes feature up to 512 electrodes distributed across 128 shanks in a single flexible device, with shank heights reaching up to 1 mm. The 3D kirigami MEAs are successfully deployed in several neural applications, both in vitro and in vivo, and identified spatially dependent electrophysiological activity patterns. Flexible 3D kirigami MEAs are therefore a powerful tool for large-scale electrical sampling of complex neural tissues while improving tissue integration and offering enhanced capabilities for analyzing neural disorders and disease models where high spatial resolution is required.

摘要

3D微电极阵列(MEA)作为脑机接口和研究电生理活动的平台正越来越受欢迎。与神经组织的相互作用取决于记录平台的电化学、机械和空间特征。虽然平面或突出的2D MEA在跨层捕捉神经活动的能力方面存在局限,但现有的3D平台在制造可扩展性、空间分辨率和组织整合方面仍需改进。在这项工作中,提出了一种可定制、可扩展且直接的方法来制造包含表面电极和穿透电极的柔性3D折纸MEA,其设计用于与神经组织的3D空间相互作用。这些新型探针在单个柔性设备中具有分布在128个柄上的多达512个电极,柄的高度可达1毫米。3D折纸MEA已成功应用于多种神经应用,包括体外和体内,并识别出空间依赖性电生理活动模式。因此,柔性3D折纸MEA是对复杂神经组织进行大规模电采样的有力工具,同时可改善组织整合,并为分析需要高空间分辨率的神经障碍和疾病模型提供增强的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8048/12177860/f3a1c8f3a09c/ADMA-37-2418524-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索