原子尺度的电催化创新:从单原子到周期性集合体用于可持续能源转换

Electrocatalytic Innovations at Atomic Scale: From Single-Atom to Periodic Ensembles for Sustainable Energy Conversion.

作者信息

Wang Longlu, Liu Yang

机构信息

College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

出版信息

Nanomaterials (Basel). 2025 Apr 21;15(8):634. doi: 10.3390/nano15080634.

Abstract

Atomically dispersed catalysts, including single-atom, dual-atom, and periodic single-metal site catalysts, have revolutionized electrocatalysis by merging atomic precision with heterogeneous stability. This review traces their evolution from pioneering stabilization strategies to advanced microenvironment engineering, enabling breakthroughs in oxygen reduction, hydrogen evolution, and CO reduction. SACs maximize atom utilization but face multi-step reaction limits, addressed by DACs through synergistic dual-site mechanisms. PSMSCs further enhance activity via ordered atomic arrangements, ensuring uniform active sites and mechanistic clarity. Key breakthroughs include microenvironment engineering to tailor active sites, as well as advanced characterization techniques revealing dynamic restructuring under operando conditions. The transition from isolated atoms to ordered ensembles highlights the importance of atomic-level control in unlocking new catalytic mechanisms. This work underscores the transformative potential of ADCs in sustainable energy technologies and provides a roadmap for future research in rational catalyst design, dynamic behavior analysis, and scalable synthesis.

摘要

原子分散催化剂,包括单原子、双原子和周期性单金属位点催化剂,通过将原子精度与非均相稳定性相结合,彻底改变了电催化领域。本综述追溯了它们从开创性的稳定策略到先进的微环境工程的发展历程,实现了在氧还原、析氢和一氧化碳还原方面的突破。单原子催化剂最大限度地提高了原子利用率,但面临多步反应限制,双原子催化剂通过协同双位点机制解决了这一问题。周期性单金属位点催化剂通过有序的原子排列进一步提高活性,确保活性位点均匀且机理清晰。关键突破包括用于定制活性位点的微环境工程,以及揭示原位条件下动态重构的先进表征技术。从孤立原子到有序集合体的转变凸显了原子水平控制在揭示新催化机制中的重要性。这项工作强调了原子分散催化剂在可持续能源技术中的变革潜力,并为合理催化剂设计、动态行为分析和可扩展合成的未来研究提供了路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2088/12029464/48f742f8a50c/nanomaterials-15-00634-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索