文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

From manual clinical criteria to machine learning algorithms: Comparing outcome endpoints derived from diverse electronic health record data modalities.

作者信息

Chappidi Shreya, Belue Mason J, Harmon Stephanie A, Jagasia Sarisha, Zhuge Ying, Tasci Erdal, Turkbey Baris, Singh Jatinder, Camphausen Kevin, Krauze Andra V

机构信息

Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.

Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom.

出版信息

PLOS Digit Health. 2025 May 14;4(5):e0000755. doi: 10.1371/journal.pdig.0000755. eCollection 2025 May.


DOI:10.1371/journal.pdig.0000755
PMID:40367064
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12077705/
Abstract

BACKGROUND: Progression free survival (PFS) is a critical clinical outcome endpoint during cancer management and treatment evaluation. Yet, PFS is often missing from publicly available datasets due to the current subjective, expert, and time-intensive nature of generating PFS metrics. Given emerging research in multi-modal machine learning (ML), we explored the benefits and challenges associated with mining different electronic health record (EHR) data modalities and automating extraction of PFS metrics via ML algorithms. METHODS: We analyzed EHR data from 92 pathology-proven GBM patients, obtaining 233 corticosteroid prescriptions, 2080 radiology reports, and 743 brain MRI scans. Three methods were developed to derive clinical PFS: 1) frequency analysis of corticosteroid prescriptions, 2) natural language processing (NLP) of reports, and 3) computer vision (CV) volumetric analysis of imaging. Outputs from these methods were compared to manually annotated clinical guideline PFS metrics. RESULTS: Employing data-driven methods, standalone progression rates were 63% (prescription), 78% (NLP), and 54% (CV), compared to the 99% progression rate from manually applied clinical guidelines using integrated data sources. The prescription method identified progression an average of 5.2 months later than the clinical standard, while the CV and NLP algorithms identified progression earlier by 2.6 and 6.9 months, respectively. While lesion growth is a clinical guideline progression indicator, only half of patients exhibited increasing contrast-enhancing tumor volumes during scan-based CV analysis. CONCLUSION: Our results indicate that data-driven algorithms can extract tumor progression outcomes from existing EHR data. However, ML methods are subject to varying availability bias, supporting contextual information, and pre-processing resource burdens that influence the extracted PFS endpoint distributions. Our scan-based CV results also suggest that the automation of clinical criteria may not align with human intuition. Our findings indicate a need for improved data source integration, validation, and revisiting of clinical criteria in parallel to multi-modal ML algorithm development.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/12077705/f0592c17030e/pdig.0000755.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/12077705/78d03f5352db/pdig.0000755.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/12077705/bc15cf5d0d8f/pdig.0000755.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/12077705/ffff875b7ebe/pdig.0000755.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/12077705/cd4291c42097/pdig.0000755.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/12077705/04953f3f218d/pdig.0000755.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/12077705/f0592c17030e/pdig.0000755.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/12077705/78d03f5352db/pdig.0000755.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/12077705/bc15cf5d0d8f/pdig.0000755.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/12077705/ffff875b7ebe/pdig.0000755.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/12077705/cd4291c42097/pdig.0000755.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/12077705/04953f3f218d/pdig.0000755.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/12077705/f0592c17030e/pdig.0000755.g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索