碳包覆镍纳米颗粒的空间限制增强了将一氧化碳电催化转化为二氧化碳的能力。 需注意,原文中“*H enhance electrocatalytic CO to CO.”似乎有误,推测可能是“enhance electrocatalytic CO to CO₂”,上述译文是基于修正后的内容翻译的。

Carbon-encapsulated nickel nanoparticles spatial confinement *H enhance electrocatalytic CO to CO.

作者信息

Kong Can, Sheng Yu, Ma Jingzhen, Shen Yuxiang, Li Guanglei, Yang Jingbo, Liu Fang, Ning Hui, Chang Huazhen

机构信息

School of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China.

School of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China.

出版信息

J Colloid Interface Sci. 2025 Nov 15;698:138023. doi: 10.1016/j.jcis.2025.138023. Epub 2025 Jun 1.

Abstract

Atomically dispersed Ni sites on N-doped carbon catalyst exhibits outstanding catalytic performance for the electrochemical CO reduction reaction (CORR). However, the roles of Ni single atom (Ni) and Ni nanoparticles (Ni NP) were not clear. Herein, a series of feasible nitrogen doped carbon encapsulated Ni catalysts with different Ni species composites were synthesized by a facile pyrolysis method for electrocatalytic CO to CO. The self-tandem catalytic mechanism between Ni NP and graphite carbon with Ni-N sites (Ni/Ni@GCN), mainly originates from their unique spatially confined structure. Specifically, Ni-N obtained by controllable carbothermic reaction is deemed to be the active center to capture CO and stabilize *CO intermediate. Meanwhile, HO is activated and dissociated to *H by Ni NP at the defect site of the carbon layer, which accelerates the formation of the key reaction intermediate *COOH of CORR. Due to the molecule-level confined space of carbon layer defects, the multiple HO dissociation was blocked and the *H+*H reaction was inhabited. It results in nearly all the *H was captured by *CO rather than forming H. The Faraday efficiency of CO(FE) can reach 98.4 % at -0.88 V vs. RHE and maintained 94 % at -200 mA cm. This work revealed a self-tandem mechanism and clarified the synergistic mechanism of Ni/Ni@GCN for CO electroreduction to CO, which provides valuable insights for designing and identifying the active sites on Ni-N catalysts.

摘要

氮掺杂碳催化剂上原子分散的镍位点对电化学CO还原反应(CORR)表现出出色的催化性能。然而,镍单原子(Ni)和镍纳米颗粒(Ni NP)的作用尚不清楚。在此,通过简便的热解方法合成了一系列具有不同镍物种复合材料的可行的氮掺杂碳封装镍催化剂,用于将电催化CO转化为CO。Ni NP与具有Ni-N位点的石墨碳(Ni/Ni@GCN)之间的自串联催化机制,主要源于它们独特的空间受限结构。具体而言,通过可控碳热反应获得的Ni-N被认为是捕获CO并稳定CO中间体的活性中心。同时,HO在碳层的缺陷位点被Ni NP活化并解离为H,这加速了CORR关键反应中间体*COOH的形成。由于碳层缺陷的分子级受限空间,多个HO解离被阻断,H+H反应受到抑制。这导致几乎所有的H都被CO捕获而不是形成H。在相对于可逆氢电极(RHE)为-0.88 V时,CO的法拉第效率(FE)可达98.4%,在-200 mA cm时保持94%。这项工作揭示了一种自串联机制,并阐明了Ni/Ni@GCN将CO电还原为CO的协同机制,为设计和识别Ni-N催化剂上的活性位点提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索