乳腺癌的器官otropism机制及使用深度学习预测远处器官转移
Mechanisms of organotropism in breast cancer and predicting metastasis to distant organs using deep learning.
作者信息
Xiao Meizhu, Fu Zhijin, Li Yanjiao, Zhang Min, Zhang Denan, Liu Lei, Jin Qing, Chen Xiujie, Xie Hongbo
机构信息
Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, People's Republic of China.
出版信息
Discov Oncol. 2025 Jun 11;16(1):1056. doi: 10.1007/s12672-025-02905-5.
BACKGROUND
Metastasis, the spread of cancer cells from the primary tumor to distant organs, is the leading cause of mortality in cancer patients. This process often exhibits a preference for specific organs, a phenomenon known as tumor organotropism. This study focuses on the organotropism of breast cancer and analyzes its genomic alterations following metastasis to four organs (bone, brain, liver, and lung). The research aims to explore the intrinsic characteristics of primary breast cancer and the interactions between tumor cells and the tumor microenvironment (TME) within these target organs. Building upon this foundation, we developed a deep learning model to identify organ-specific metastatic genes, providing insights into the molecular mechanisms of metastasis.
METHODS
To investigate the mechanisms of organ-specific metastasis in breast cancer, we employed an integrative approach combining single-cell RNA sequencing, bulk RNA sequencing, ChIP-seq data, and deep learning techniques. Single-cell analysis provided detailed insights into cellular heterogeneity and microenvironment interactions at metastatic sites. Bulk RNA sequencing enabled the identification of gene expression patterns associated with metastatic propensity. A deep neural network (DNN) model was developed to analyze these complex datasets and identify key predictors of organ-specific metastasis.
RESULTS
Our integrative analysis revealed distinct gene expression profiles and cellular compositions in metastatic lesions across different organs. We have identified that, regardless of the target organ, breast cancer metastasis critically depends on specific biological signaling pathways, including the MAPK signaling pathway, metabolic pathways, the PI3K-Akt signaling pathway, and the positive regulation of cell adhesion. Single-cell sequencing highlighted unique interactions between tumor cells and the microenvironment, which varied significantly depending on the metastatic site. Fibroblasts play a critical role in facilitating the colonization of breast cancer cells in metastatic organs. The deep learning models effectively identified key molecular signatures and pathways associated with organ-specific metastasis, providing insights into the metastatic process.
CONCLUSION
The study underscores the importance of the tumor microenvironment in influencing breast cancer metastasis to distant organs. We also established a comprehensive framework for understanding the mechanisms driving organotropism metastasis in breast cancer. Additionally, we identified key genes and signaling pathways associated with organ-specific metastasis, providing insights that may inform future studies on risk assessment and potential therapeutic targets for metastatic breast cancer.
背景
转移,即癌细胞从原发性肿瘤扩散至远处器官,是癌症患者死亡的主要原因。这一过程通常表现出对特定器官的偏好,这种现象被称为肿瘤器官嗜性。本研究聚焦于乳腺癌的器官嗜性,并分析其转移至四个器官(骨、脑、肝和肺)后的基因组改变。该研究旨在探索原发性乳腺癌的内在特征以及肿瘤细胞与这些靶器官内肿瘤微环境(TME)之间的相互作用。在此基础上,我们开发了一种深度学习模型来识别器官特异性转移基因,从而深入了解转移的分子机制。
方法
为了研究乳腺癌器官特异性转移的机制,我们采用了一种整合方法,结合单细胞RNA测序、批量RNA测序、ChIP-seq数据和深度学习技术。单细胞分析提供了关于转移部位细胞异质性和微环境相互作用的详细见解。批量RNA测序能够识别与转移倾向相关的基因表达模式。开发了一个深度神经网络(DNN)模型来分析这些复杂数据集,并识别器官特异性转移的关键预测因子。
结果
我们的整合分析揭示了不同器官转移病灶中独特的基因表达谱和细胞组成。我们已经确定,无论靶器官如何,乳腺癌转移关键取决于特定的生物信号通路,包括MAPK信号通路、代谢通路、PI3K-Akt信号通路以及细胞黏附的正调控。单细胞测序突出了肿瘤细胞与微环境之间独特的相互作用,这种相互作用因转移部位而异。成纤维细胞在促进乳腺癌细胞在转移器官中的定植方面起着关键作用。深度学习模型有效地识别了与器官特异性转移相关的关键分子特征和通路,为转移过程提供了见解。
结论
该研究强调了肿瘤微环境在影响乳腺癌向远处器官转移中的重要性。我们还建立了一个全面的框架来理解驱动乳腺癌器官嗜性转移的机制。此外,我们确定了与器官特异性转移相关的关键基因和信号通路,并提供了相关见解,这可能为未来转移性乳腺癌的风险评估和潜在治疗靶点研究提供参考。