通过研究网络扩展国家规模的野生动物疾病监测系统。

Expanding National-Scale Wildlife Disease Surveillance Systems With Research Networks.

作者信息

Pepin Kim M, Combs Matthew A, Bastille-Rousseau Guillaume, Craft Meggan E, Cross Paul, Diuk-Wasser Maria A, Gagne Roderick B, Gallo Travis, Garwood Tyler, Heale Jonathon D, Hewitt Joshua, Høy-Petersen Jennifer, Malmberg Jennifer, Mullinax Jennifer, Plimpton Laura, Smith Lauren, VanAcker Meredith C, Chandler Jeffrey C, Walter W David, Wilson-Henjum Grete, Wittemyer George, Manlove Kezia

机构信息

National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service United States Department of Agriculture Fort Collins Colorado USA.

Cooperative Wildlife Research Laboratory Southern Illinois University Carbondale Illinois USA.

出版信息

Ecol Evol. 2025 Jun 11;15(6):e71492. doi: 10.1002/ece3.71492. eCollection 2025 Jun.

Abstract

Efficient learning about disease dynamics in free-ranging wildlife systems can benefit from active surveillance that is standardized across different ecological contexts. For example, active surveillance that targets specific individuals and populations with standardized sampling across ecological contexts (landscape-scale targeted surveillance) is important for developing a mechanistic understanding of disease emergence, which is the foundation for improving risk assessment of zoonotic or wildlife-livestock disease outbreaks and predicting hotspots of disease emergence. However, landscape-scale targeted surveillance systems are rare and challenging to implement. Increasing experience and infrastructure for landscape-scale targeted surveillance will improve readiness for rapid deployment of this type of surveillance in response to new disease emergence events. Here, we describe our experience developing and rapidly deploying a landscape-scale targeted surveillance system for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in two free-ranging deer species across their ranges in the United States. Our surveillance system was designed to collect data across individual, population, and landscape scales for future analyses aimed at understanding mechanisms and risk factors of SARS-CoV-2 transmission, evolution, and persistence. Our approach leveraged partnerships between state and federal public service sectors and academic researchers in a landscape-scale targeted surveillance research network. Methods describe our approach to developing the surveillance network and sampling design. Results report challenges with implementing our intended sampling design, specifically how the design was adapted as different challenges arose and summarize the sampling design that has been implemented thus far. In the discussion, we describe strategies that were important for the successful deployment of landscape-scale targeted surveillance, development and operation of the research network, construction of similar networks in the future, and analytical approaches for the data based on the sampling design.

摘要

在自由放养的野生动物系统中高效了解疾病动态,可受益于在不同生态环境中实现标准化的主动监测。例如,针对特定个体和种群、在不同生态环境中采用标准化采样的主动监测(景观尺度目标监测),对于深入理解疾病的出现机制至关重要,而这是改进人畜共患病或野生动物与家畜疾病暴发风险评估以及预测疾病出现热点的基础。然而,景观尺度目标监测系统很少见且实施具有挑战性。增加景观尺度目标监测的经验和基础设施,将提高在应对新出现的疾病事件时快速部署此类监测的准备程度。在此,我们描述了我们在美国两个自由放养鹿种的分布范围内,开发并迅速部署针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的景观尺度目标监测系统的经验。我们的监测系统旨在跨个体、种群和景观尺度收集数据,以供未来分析,旨在了解SARS-CoV-2传播、进化和持续存在的机制及风险因素。我们的方法利用了州和联邦公共服务部门与学术研究人员在一个景观尺度目标监测研究网络中的合作关系。方法部分描述了我们开发监测网络和采样设计的方法。结果部分报告了实施我们预期采样设计时遇到的挑战,特别是在出现不同挑战时如何调整设计,并总结了迄今为止已实施的采样设计。在讨论部分,我们描述了对成功部署景观尺度目标监测、研究网络的开发与运营、未来构建类似网络以及基于采样设计进行数据分析而言至关重要的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b6b/12158667/72e629f9072e/ECE3-15-e71492-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索