受生物启发的手性肽-鏻盐催化:从酶到阳离子小分子酶模拟物

Bioinspired Chiral Peptide-Phosphonium Salt Catalysis: From Enzymes to Cationic Small-Molecule Enzyme Mimics.

作者信息

Fang Siqiang, Liu Zanjiao, Wang Fan, Wang Tianli

机构信息

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.

出版信息

Acc Chem Res. 2025 Jul 1;58(13):2088-2109. doi: 10.1021/acs.accounts.5c00257. Epub 2025 Jun 13.

Abstract

ConspectusEnzymes exemplify nature's catalytic mastery through precise stereochemical control and remarkable rate enhancements, yet their synthetic application remains limited by inherent vulnerabilities: thermal instability, narrow substrate tolerance, and complex engineering requirements. These challenges drive our pursuit of modular organocatalysts that emulate enzymatic cooperativity while combining ease of synthesis, versatility, and high tunability, termed "bioinspired organic small-molecule enzymes".In this Account, we detail the creation of peptide-phosphonium salt (PPS) catalysts that marry conformationally ordered peptide scaffolds with phase-transfer-active phosphonium cations. This design strategically combines (1) programmable peptide secondary structures (α-helices/β-sheets) for spatial control of hydrogen-bonding networks, (2) tunable phosphonium centers (electronic/steric modulation via aryl/alkyl substituents) for electrostatic activation, and (3) modular architecture enabling three-dimensional optimization (peptide sequences, cation substituents, and counterions). Such integration permits systematic enhancement of stereoselectivity and catalytic efficiency across diverse reaction manifolds under ambient conditions.The PPS platform has revolutionized challenging asymmetric annulation reactions. Our initial breakthrough in aza-Darzens reactions (formal [2 + 1]) established a general method for synthesizing sterically hindered enantioenriched aziridines, overcoming long-standing stereochemical challenges through synergistic substrate preorganization by peptide hydrogen bonding and charge stabilization by phosphonium ion-pairing interactions. Subsequent expansion to a variety of cycloadditions, including [2 + 2], [3 + 2], [4 + 2], and formal [4 + 3]/[5 + 1]/[5 + 2]/[6 + 1]/[6 + 2], etc. delivered structurally diverse chiral N-heterocycles, while pioneering the first catalytic asymmetric Atherton-Todd reaction enabled the stereodivergent synthesis of P-chiral compounds, significantly expanding the toolbox for phosphorus stereochemistry. Beyond single-molecule catalysis, PPS catalysts exhibit excellent adaptability in relay and cooperative catalysis systems. A bifunctional PPS/Lewis base relay catalysis system achieved efficient axial chirality induction in biaryl phosphates, while metal-cooperative platforms enabled stereocontrolled synthesis of strained medium rings, including seven- to nine-membered systems, through synergistic weak-bonding and metal catalysis. These advances underscore PPS catalysts as versatile platforms surpassing enzymatic systems in construction of structurally diverse chiral molecules.This Account not only summarizes our progress in PPS catalyst development and applications but also highlights the mechanistic insights, providing design principles for next-generation enzyme mimics. By emulating nature's strategy, we envision expanding PPS catalysis to address unmet challenges in asymmetric synthesis, from enzymatic-level stereochemical editing to the sustainable manufacturing of chiral substances.

摘要

概述

酶通过精确的立体化学控制和显著的速率增强体现了自然界的催化优势,但其合成应用仍受到固有弱点的限制:热不稳定、底物耐受性窄以及复杂的工程要求。这些挑战促使我们追求模块化有机催化剂,它能模拟酶的协同作用,同时兼具合成简便、多功能性和高可调性,即“受生物启发的有机小分子酶”。

在本综述中,我们详细介绍了肽 - 鏻盐(PPS)催化剂的创制,该催化剂将构象有序的肽支架与相转移活性鏻阳离子相结合。这种设计策略性地结合了:(1)用于氢键网络空间控制的可编程肽二级结构(α - 螺旋/β - 折叠);(2)用于静电活化的可调鏻中心(通过芳基/烷基取代基进行电子/空间调制);(3)实现三维优化的模块化结构(肽序列、阳离子取代基和抗衡离子)。这种整合使得在环境条件下,跨多种反应类型的立体选择性和催化效率能够得到系统增强。

PPS平台彻底改变了具有挑战性的不对称环化反应。我们在氮杂 - Darzens反应(形式上的[2 + 1])中的初步突破建立了一种合成空间位阻对映体富集氮丙啶的通用方法,通过肽氢键的协同底物预组织和鏻离子对相互作用的电荷稳定作用,克服了长期存在的立体化学挑战。随后扩展到各种环加成反应,包括[2 + 2]、[3 + 2]、[4 + 2]以及形式上的[4 + 3]/[5 + 1]/[5 + 2]/[6 + 1]/[6 + 2]等,得到了结构多样的手性N - 杂环化合物,同时开创了首例催化不对称Atherton - Todd反应,实现了P - 手性化合物的立体发散合成,显著扩展了磷立体化学的工具库。除了单分子催化,PPS催化剂在接力和协同催化体系中表现出优异的适应性。一个双功能PPS/路易斯碱接力催化体系在磷酸二芳基酯中实现了高效的轴手性诱导,而金属协同平台通过协同弱键合和金属催化实现了包括七元至九元体系在内的张力中环的立体控制合成。这些进展突出了PPS催化剂作为多功能平台在构建结构多样的手性分子方面超越酶体系的优势。

本综述不仅总结了我们在PPS催化剂开发和应用方面的进展,还强调了机理见解,为下一代酶模拟物提供了设计原则。通过模仿自然界策略,我们设想扩展PPS催化以应对不对称合成中未满足的挑战,从酶水平的立体化学编辑到手性物质的可持续制造。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索