使用nnU-Net v2对锥形束计算机断层扫描(CBCT)中的舌骨进行自动三维分割:一项关于模型性能和潜在临床应用的回顾性研究

Automated 3D segmentation of the hyoid bone in CBCT using nnU-Net v2: a retrospective study on model performance and potential clinical utility.

作者信息

Gümüssoy Ismail, Haylaz Emre, Duman Suayip Burak, Kalabalik Fahrettin, Say Seyda, Celik Ozer, Bayrakdar Ibrahim Sevki

机构信息

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Sakarya University, Adapazarı, Sakarya, 54100, Turkey.

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Inönü University, Malatya, 44280, Turkey.

出版信息

BMC Med Imaging. 2025 Jul 1;25(1):217. doi: 10.1186/s12880-025-01797-9.

Abstract

OBJECTIVE

This study aimed to identify the hyoid bone (HB) using the nnU-Net based artificial intelligence (AI) model in cone beam computed tomography (CBCT) images and assess the model's success in automatic segmentation.

METHODS

CBCT images of 190 patients were randomly selected. The raw data was converted to DICOM format and transferred to the 3D Slicer Imaging Software (Version 4.10.2; MIT, Cambridge, MA, USA). HB was labeled manually using the 3D Slicer. The dataset was divided into training, validation, and test sets in a ratio of 8:1:1. The nnU-Net v2 architecture was utilized to process the training and test datasets, generating the algorithm weight factors. To assess the model's accuracy and performance, a confusion matrix was employed. F1-score, Dice coefficient (DC), 95% Hausdorff distance (95% HD), and Intersection over Union (IoU) metrics were calculated to evaluate the results.

RESULTS

The model's performance metrics were as follows: DC = 0.9434, IoU = 0.8941, F1-score = 0.9446, and 95% HD = 1.9998. The receiver operating characteristic (ROC) curve was generated, yielding an AUC value of 0.98.

CONCLUSION

The results indicated that the nnU-Net v2 model achieved high precision and accuracy in HB segmentation on CBCT images. Automatic segmentation of HB can enhance clinicians' decision-making speed and accuracy in diagnosing and treating various clinical conditions.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

目的

本研究旨在利用基于nnU-Net的人工智能(AI)模型在锥束计算机断层扫描(CBCT)图像中识别舌骨(HB),并评估该模型在自动分割方面的成功率。

方法

随机选择190例患者的CBCT图像。原始数据转换为DICOM格式并传输到3D Slicer成像软件(版本4.10.2;美国马萨诸塞州剑桥市麻省理工学院)。使用3D Slicer手动标记HB。数据集按8:1:1的比例分为训练集、验证集和测试集。利用nnU-Net v2架构处理训练和测试数据集,生成算法权重因子。为评估模型的准确性和性能,采用了混淆矩阵。计算F1分数、骰子系数(DC)、95%豪斯多夫距离(95%HD)和交并比(IoU)指标来评估结果。

结果

该模型的性能指标如下:DC = 0.9434,IoU = 0.8941,F1分数 = 0.9446,95%HD = 1.9998。生成了受试者操作特征(ROC)曲线,AUC值为0.98。

结论

结果表明,nnU-Net v2模型在CBCT图像上的HB分割中实现了高精度和准确性。HB的自动分割可以提高临床医生在诊断和治疗各种临床病症时的决策速度和准确性。

临床试验编号

不适用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索