基于超声的影像组学列线图预测乳腺癌浸润状态的多中心研究

Ultrasound-based radiomic nomogram for predicting the invasive status of breast cancer: a multicenter study.

作者信息

Yan Dan, Xie Jingwen, Cheng Wanling, Xue Wen, Den Yaohong, Zhang JianXing

机构信息

Department of Ultrasound, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.

Department of Ultrasound, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

出版信息

Eur J Med Res. 2025 Jul 1;30(1):526. doi: 10.1186/s40001-025-02828-5.

Abstract

PURPOSE

This study aimed to develop a nomogram combining clinical, sonographic, and radiomic features to discriminate invasive breast cancer (IBC) from noninvasive breast cancer (non-IBC), and to evaluate the prognostic potential of conventional ultrasound (CUS)-based radiomic signatures in predicting breast cancer invasiveness.

METHODS

A total of 403 IBCs and 221 non-IBCs were retrospectively collected from multiple institutes. The cases were divided into three subsets based on their institutional origin: a training set (n = 353), an internal test set (n = 153), and an external test set (n = 118). A total of 1125 radiomic features were extracted from the training set of CUS images, and Radiomics Scores (Rad-scores) were constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. Different nomogram models were constructed using logistic regression, including a clinical-radiomics model (Clinic + Rad), a CUS-clinical model (CUS + Clinic), and a combined CUS-clinical-radiomics model (CUS + Clinic + Rad). The diagnostic performances of these different models were assessed and compared by calculating the area under the receiver operating curve (AUC) as well as the corresponding sensitivity and specificity from the internal and external test sets.

RESULTS

Significant differences were observed between non-IBC and IBC groups in the following variables: Rad-score, age, axillary lymph node metastasis (ALNM), speculated margin, and blood flow (all P < 0.05). On the basis of these factors, the CUS + Clinic + Rad model significantly outperformed other models, with AUC values of 0.91 in the training set, 0.94 in the internal test set, and 0.90 in the external test set(all P < 0.05). Furthermore, the combined model demonstrated significantly higher sensitivity compared to the single Rad-score model (91.7% vs. 80.0%, P < 0.05), while no significant difference was observed in specificity (83.7% vs. 79.6%, P > 0.05). The proposed combined nomogram demonstrated excellent calibration and clinical utility.

CONCLUSIONS

Radiomic features significantly enhanced radiologists' diagnostic accuracy in distinguishing non-IBC from IBC. The combined CUS-clinical-radiomics model showed robust performance in predicting invasive status of breast cancer, highlighting its potential for clinical translation.

摘要

目的

本研究旨在开发一种结合临床、超声和影像组学特征的列线图,以鉴别浸润性乳腺癌(IBC)与非浸润性乳腺癌(非IBC),并评估基于传统超声(CUS)的影像组学特征在预测乳腺癌浸润性方面的预后潜力。

方法

从多个机构回顾性收集了403例IBC和221例非IBC病例。根据病例的机构来源将其分为三个子集:训练集(n = 353)、内部测试集(n = 153)和外部测试集(n = 118)。从CUS图像训练集中提取了总共1125个影像组学特征,并使用最小绝对收缩和选择算子(LASSO)算法构建了影像组学评分(Rad评分)。使用逻辑回归构建了不同的列线图模型,包括临床-影像组学模型(Clinic + Rad)、CUS-临床模型(CUS + Clinic)和联合CUS-临床-影像组学模型(CUS + Clinic + Rad)。通过计算受试者工作特征曲线(ROC)下面积以及内部和外部测试集相应的敏感性和特异性,评估并比较了这些不同模型的诊断性能。

结果

在以下变量中,非IBC组和IBC组之间观察到显著差异:Rad评分、年龄、腋窝淋巴结转移(ALNM)、推测边缘和血流(所有P < 0.05)。基于这些因素,CUS + Clinic + Rad模型明显优于其他模型,训练集、内部测试集和外部测试集的AUC值分别为0.91、0.94和0.90(所有P < 0.05)。此外,联合模型的敏感性明显高于单一Rad评分模型(91.7%对80.0%,P < 0.05),而特异性方面未观察到显著差异(83.7%对79.6%,P > 0.05)。所提出的联合列线图显示出良好的校准和临床实用性。

结论

影像组学特征显著提高了放射科医生区分非IBC和IBC的诊断准确性。联合CUS-临床-影像组学模型在预测乳腺癌浸润状态方面表现出强大的性能,突出了其临床转化潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f505/12211323/7ac9cea0feb0/40001_2025_2828_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索