文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

GPRC5A/CXCL8/NLRP3介导的中性粒细胞胞外诱捕网驱动胰腺腺癌对吉西他滨纳米白蛋白结合型紫杉醇耐药

GPRC5A/CXCL8/NLRP3-mediated neutrophil extracellular traps drive gemcitabine-nab-paclitaxel resistance in pancreatic adenocarcinoma.

作者信息

Zhu Tianyi, Yang Qianwen, Qian Xiaozhe, Wu Xiuqi, Fang Jianchen, Lin Yuli, Feng Yukuan, Gao Jian, Xia Qing

机构信息

Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.

Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.

出版信息

Cancer Biol Med. 2025 Jul 15;22(7):832-53. doi: 10.20892/j.issn.2095-3941.2025.0040.


DOI:10.20892/j.issn.2095-3941.2025.0040
PMID:40665634
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12302273/
Abstract

OBJECTIVE: Gemcitabine combined with nab-paclitaxel therapy (GnP) represents first-line chemotherapy for advanced pancreatic ductal adenocarcinoma (PDAC). However, the efficacy of GnP is diminished due to chemotherapeutic resistance induced by the tumor microenvironment (TME), the underlying mechanisms of which remain poorly understood. METHODS: Clinical data from patients with PDAC who underwent GnP therapy were collected and neutrophil infiltration in tumor tissues was assessed. PDAC cell lines and a mouse model of PDAC were utilized to determine the mechanisms underlying GnP resistance and to focus on tumor-associated neutrophils and neutrophil extracellular traps (NETs). RESULTS: GnP therapy recruited neutrophils to the TME, which resulted in the formation of NETs that contributed to therapeutic resistance in the PDAC murine model. The NET inhibitor, PAD4, enhanced the efficacy of GnP by suppressing tumor growth. Furthermore, GnP significantly upregulated CXCL8 secretion in GnP-resistant MIA PaCa-2 cells, which was mediated by increased expression of GPRC5A in PDAC cells. Screening of classic NET-derived molecules identified cell-free DNA (cfDNA) as a pleiotropic factor that promoted tumor cell proliferation and migration and thereby contributed to chemotherapeutic resistance. experiments revealed that the combination of GnP with siGPRC5A or DNase was more effective in reducing tumor growth and prolonging survival in PDAC-bearing mice than either treatment alone. CONCLUSIONS: The GPRC5A-CXCL8-NET-cfDNA axis has a critical role in the development of therapeutic resistance to GnP in PDAC. Targeting this axis may represent a promising strategy for overcoming GnP resistance and thereby enhancing the efficacy of chemotherapy in PDAC.

摘要

目的:吉西他滨联合纳米白蛋白结合型紫杉醇疗法(GnP)是晚期胰腺导管腺癌(PDAC)的一线化疗方案。然而,肿瘤微环境(TME)诱导的化疗耐药性降低了GnP的疗效,其潜在机制仍知之甚少。 方法:收集接受GnP治疗的PDAC患者的临床资料,并评估肿瘤组织中的中性粒细胞浸润情况。利用PDAC细胞系和PDAC小鼠模型来确定GnP耐药的潜在机制,并聚焦于肿瘤相关中性粒细胞和中性粒细胞胞外陷阱(NETs)。 结果:GnP疗法将中性粒细胞募集到TME中,导致NETs形成,这在PDAC小鼠模型中导致了治疗耐药性。NET抑制剂PAD4通过抑制肿瘤生长增强了GnP的疗效。此外,GnP显著上调了GnP耐药的MIA PaCa-2细胞中CXCL8的分泌,这是由PDAC细胞中GPRC5A表达增加介导的。对经典NET衍生分子的筛选确定无细胞DNA(cfDNA)为一种多效性因子,它促进肿瘤细胞增殖和迁移,从而导致化疗耐药。实验表明,GnP与siGPRC5A或脱氧核糖核酸酶联合使用在减少荷瘤小鼠肿瘤生长和延长生存期方面比单独使用任何一种治疗方法都更有效。 结论:GPRC5A-CXCL8-NET-cfDNA轴在PDAC对GnP治疗耐药的发展中起关键作用。靶向该轴可能是克服GnP耐药从而提高PDAC化疗疗效的一种有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/4d334ba09725/cbm-22-07-832-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/839a0b207572/cbm-22-07-832-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/0f85e5b13f1c/cbm-22-07-832-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/2b32b132131b/cbm-22-07-832-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/6642997ac03b/cbm-22-07-832-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/aa0f0e9b1c4e/cbm-22-07-832-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/18863197eed7/cbm-22-07-832-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/24da2ab88f04/cbm-22-07-832-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/8880c04cdae9/cbm-22-07-832-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/2426a9c90733/cbm-22-07-832-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/4d334ba09725/cbm-22-07-832-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/839a0b207572/cbm-22-07-832-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/0f85e5b13f1c/cbm-22-07-832-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/2b32b132131b/cbm-22-07-832-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/6642997ac03b/cbm-22-07-832-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/aa0f0e9b1c4e/cbm-22-07-832-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/18863197eed7/cbm-22-07-832-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/24da2ab88f04/cbm-22-07-832-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/8880c04cdae9/cbm-22-07-832-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/2426a9c90733/cbm-22-07-832-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea21/12302273/4d334ba09725/cbm-22-07-832-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索