Patel Miti A, Boribong Brittany P, Sinha Hugo, Xiao Bin, Xie Keqiang, Vo Philippe Q N, Chin Andrew B, Ellouzi Ayoub, Little Samuel R, Shih Steve, Wu Hao, Muller William J, Hirukawa Alison
DropGenie, Cambridge, MA, USA.
Department of Biochemistry, McGill University, Montreal, Canada.
Sci Rep. 2025 Aug 11;15(1):29350. doi: 10.1038/s41598-025-13532-z.
High-efficiency gene editing in primary human cells is critical for advancing therapeutic development and functional genomics, yet conventional electroporation platforms often require high cell input and are poorly suited to parallelized experiments. Here we introduce a next-generation digital microfluidics (DMF) electroporation platform that enables high-throughput, low-input genome engineering using discrete droplets manipulated on a planar electrode array. The system supports 48 independently programmable reaction sites and integrates seamlessly with laboratory automation, allowing efficient delivery of CRISPR-Cas9 RNPs and mRNA cargo into as few as 3,000 primary human cells per condition. The platform was validated across diverse primary human cell types and cargo modalities, demonstrating efficient delivery of various cargo, with high rates of transfection, gene knockout via non-homologous end joining, and precise knock-in through homology-directed repair. To showcase its utility in functional genomics, we applied the platform to an arrayed CRISPR-Cas9 screen in chronically stimulated human CD4⁺ T cells, identifying novel regulators of exhaustion, including epigenetic and transcriptional modulators. These findings establish our DMF-based electroporation platform as a powerful tool for miniaturized genome engineering in rare or precious cell populations and provide a scalable framework for high-content genetic screening in primary human cells.
原代人类细胞中的高效基因编辑对于推进治疗性开发和功能基因组学至关重要,但传统的电穿孔平台通常需要大量细胞输入,且不太适合并行实验。在此,我们推出了一种下一代数字微流控(DMF)电穿孔平台,该平台利用平面电极阵列上操纵的离散液滴实现高通量、低输入的基因组工程。该系统支持48个独立可编程的反应位点,并与实验室自动化无缝集成,能够在每种条件下将CRISPR-Cas9核糖核蛋白(RNP)和信使核糖核酸(mRNA)有效递送至低至3000个原代人类细胞中。该平台在多种原代人类细胞类型和货物形式中得到验证,证明各种货物的有效递送,具有高转染率、通过非同源末端连接进行基因敲除以及通过同源定向修复进行精确敲入。为展示其在功能基因组学中的效用,我们将该平台应用于慢性刺激的人类CD4⁺T细胞的阵列CRISPR-Cas9筛选,鉴定出包括表观遗传和转录调节因子在内的新型耗竭调节因子。这些发现确立了我们基于DMF的电穿孔平台作为稀有或珍贵细胞群体中微型化基因组工程的强大工具,并为原代人类细胞中的高内涵基因筛选提供了可扩展框架。