Suppr超能文献

金黄色葡萄球菌中铁调节蛋白SirA的鉴定与特性分析

Identification and characterization of SirA, an iron-regulated protein from Staphylococcus aureus.

作者信息

Heinrichs J H, Gatlin L E, Kunsch C, Choi G H, Hanson M S

机构信息

MedImmune, Inc., Gaithersburg, Maryland 20878, USA.

出版信息

J Bacteriol. 1999 Mar;181(5):1436-43. doi: 10.1128/JB.181.5.1436-1443.1999.

Abstract

The acquisition of iron by pathogenic bacteria is often a crucial step in establishing infection. To accomplish this, many bacteria, including Staphylococcus aureus, produce low-molecular-weight iron-chelating siderophores. However, the secretion and transport of these molecules in gram-positive organisms are poorly understood. The sequence, organization, and regulation of genes involved in siderophore transport are conserved among gram-negative bacteria. We used this information to identify a putative siderophore transport locus from an S. aureus genomic sequence database. This locus contains three predicted open reading frames with a high degree of homology to genes involved in siderophore uptake in several bacterial species, in particular the cbr locus of the plant pathogen Erwinia chrysanthemi. The first gene in the locus, which we have designated sir for staphylococcal iron regulated, encodes a putative lipoprotein with a molecular mass of 37 kDa. The open reading frame is preceded by a 19-bp region of dyad symmetry with homology for operator sequences controlling iron-regulated expression of genes in other bacteria. Fur titration experiments indicate that this region of dyad symmetry is sufficient for Fur-dependent regulation in Escherichia coli. The expression of this gene was repressed, in a dose-dependent manner, by the addition of iron to the S. aureus culture medium. sir-encoded proteins may be involved in iron acquisition in vivo and therefore may be targets for antimicrobial agents.

摘要

病原菌获取铁通常是建立感染的关键步骤。为实现这一点,包括金黄色葡萄球菌在内的许多细菌都会产生低分子量的铁螯合铁载体。然而,这些分子在革兰氏阳性菌中的分泌和运输情况却知之甚少。铁载体运输相关基因的序列、组织和调控在革兰氏阴性菌中是保守的。我们利用这一信息从金黄色葡萄球菌基因组序列数据库中鉴定出一个假定的铁载体运输基因座。该基因座包含三个预测的开放阅读框,与几种细菌中参与铁载体摄取的基因具有高度同源性,特别是植物病原菌菊欧文氏菌的cbr基因座。该基因座中的第一个基因,我们将其命名为sir(代表葡萄球菌铁调节),编码一种分子量为37 kDa的假定脂蛋白。该开放阅读框之前有一个19 bp的二元对称区域,与控制其他细菌中铁调节基因表达的操纵序列具有同源性。Fur滴定实验表明,这个二元对称区域足以在大肠杆菌中进行Fur依赖性调控。向金黄色葡萄球菌培养基中添加铁会以剂量依赖的方式抑制该基因的表达。由sir编码的蛋白质可能参与体内铁的获取,因此可能是抗菌剂的作用靶点。

相似文献

1
Identification and characterization of SirA, an iron-regulated protein from Staphylococcus aureus.
J Bacteriol. 1999 Mar;181(5):1436-43. doi: 10.1128/JB.181.5.1436-1443.1999.
2
SirR, a novel iron-dependent repressor in Staphylococcus epidermidis.
Infect Immun. 1998 Sep;66(9):4123-9. doi: 10.1128/IAI.66.9.4123-4129.1998.
4
Iron regulation and pathogenicity in Erwinia chrysanthemi 3937: role of the Fur repressor protein.
Mol Plant Microbe Interact. 1999 Feb;12(2):119-28. doi: 10.1094/MPMI.1999.12.2.119.
5
Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus.
Microbiology (Reading). 2000 Mar;146 ( Pt 3):659-668. doi: 10.1099/00221287-146-3-659.
7
Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein.
Mol Microbiol. 2002 Mar;43(6):1603-14. doi: 10.1046/j.1365-2958.2002.02850.x.
9
Cloning and characterization of a gene for a 19 kDa fibrinogen-binding protein from Staphylococcus aureus.
Mol Microbiol. 1994 May;12(4):599-606. doi: 10.1111/j.1365-2958.1994.tb01046.x.
10
Involvement of SirABC in iron-siderophore import in Staphylococcus aureus.
J Bacteriol. 2004 Dec;186(24):8356-62. doi: 10.1128/JB.186.24.8356-8362.2004.

引用本文的文献

1
Calprotectin-mediated survival of in coculture with occurs without nutrient metal sequestration.
mBio. 2025 May 14;16(5):e0384624. doi: 10.1128/mbio.03846-24. Epub 2025 Mar 28.
2
Exploring the targetome of IsrR, an iron-regulated sRNA controlling the synthesis of iron-containing proteins in .
Front Microbiol. 2024 Jul 5;15:1439352. doi: 10.3389/fmicb.2024.1439352. eCollection 2024.
3
lipoproteins in infectious diseases.
Front Microbiol. 2022 Oct 3;13:1006765. doi: 10.3389/fmicb.2022.1006765. eCollection 2022.
5
Absence of Protein A Expression Is Associated With Higher Capsule Production in Staphylococcal Isolates.
Front Microbiol. 2019 May 10;10:863. doi: 10.3389/fmicb.2019.00863. eCollection 2019.
6
The Polycyclic Polyprenylated Acylphloroglucinol Antibiotic PPAP 23 Targets the Membrane and Iron Metabolism in .
Front Microbiol. 2019 Jan 22;10:14. doi: 10.3389/fmicb.2019.00014. eCollection 2019.
7
Haem-iron plays a key role in the regulation of the Ess/type VII secretion system of Staphylococcus aureus RN6390.
Microbiology (Reading). 2017 Dec;163(12):1839-1850. doi: 10.1099/mic.0.000579. Epub 2017 Nov 24.
8
Evaluation of Staphylococcus aureus Lipoproteins: Role in Nutritional Acquisition and Pathogenicity.
Front Microbiol. 2016 Sep 13;7:1404. doi: 10.3389/fmicb.2016.01404. eCollection 2016.
9
Characterizing the transcriptional adaptation of Staphylococcus aureus to stationary phase growth.
Pathog Dis. 2016 Jul;74(5). doi: 10.1093/femspd/ftw046. Epub 2016 May 8.
10
The effect of skin fatty acids on Staphylococcus aureus.
Arch Microbiol. 2015 Mar;197(2):245-67. doi: 10.1007/s00203-014-1048-1. Epub 2014 Oct 18.

本文引用的文献

2
Siderophore production by Staphylococcus aureus and identification of iron-regulated proteins.
Infect Immun. 1997 May;65(5):1944-8. doi: 10.1128/iai.65.5.1944-1948.1997.
3
Iron depletion and virulence in Staphylococcus aureus.
FEMS Microbiol Lett. 1996 Aug 1;141(2-3):117-27. doi: 10.1111/j.1574-6968.1996.tb08373.x.
4
Identification and analysis of a gene encoding a Fur-like protein of Staphylococcus epidermidis.
FEMS Microbiol Lett. 1996 Jul 1;140(2-3):253-9. doi: 10.1111/j.1574-6968.1996.tb08345.x.
6
Characterization of the sar locus and its interaction with agr in Staphylococcus aureus.
J Bacteriol. 1996 Jan;178(2):418-23. doi: 10.1128/jb.178.2.418-423.1996.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验