Eckert K A, Opresko P L
The Jake Gittlen Cancer Research Institute and The Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
Mutat Res. 1999 Mar 8;424(1-2):221-36. doi: 10.1016/s0027-5107(99)00021-4.
DNA polymerases differentiate between correct and incorrect substrates during synthesis on undamaged DNA templates through the biochemical steps of base incorporation, primer-template extension and proofreading excision. Recent research examining DNA polymerase processing of abasic, alkylation and oxidative lesions is reviewed in light of these discrimination mechanisms. Inhibition of DNA synthesis results from correct polymerase discrimination against utilization of geometrically incorrect template bases or 3' terminal basepairs. The efficiency of translesion synthesis is thus related to the physical structure of the lesion containing DNA. However, variations in enzyme structure and kinetics result in translesion synthesis efficiencies that are also dependent upon the DNA polymerase. With a low probability, polymerase misinsertion events create a 3' lesion terminus which is geometrically favored over the correct lesion basepair, resulting in mutagenic translesion synthesis. For example, both polymerase alpha and polymerase beta appear to require the formation of a stable 3' primer-template structure for efficient abasic site translesion synthesis. However, the enzymes differ as to the precise molecular make-up of the stable DNA structure, resulting in different mutational specificities. Similar mechanisms may be applicable to oxidative damage, where mutational specificities dependent upon the DNA polymerase also have been observed. In vitro reaction conditions also influence DNA polymerase processing of lesions. Using an in vitro herpes simplex virus thymidine kinase (HSV-tk) gene forward mutation assay, we demonstrate that high dNTP substrate concentrations affect the mutagenic specificity of translesion synthesis using alkylated templates. The exonuclease-deficient Klenow polymerase error frequency for G-->A transition mutations using templates modified by N-ethyl-N-nitrosourea (ENU) was four-fold higher at 1000 microM [dNTP], relative to 50 microM [dNTP], consistent with an increased efficiency of extension of the etO6G.T mispair. Moreover, the frequency of other ENU-induced polymerase errors was suppressed when polymerase reactions contained 50 microM dNTP, relative to 1000 microM dNTP. The efficiency of proofreading as a polymerase error discrimination mechanism reflects a balance between the competing processes of 3'-->5' exonuclease removal of mispairs and polymerization of the next correct nucleotide. Polymerases that are devoid of a proofreading exonuclease generally display enhanced abasic site translesion synthesis relative to proofreading-proficient enzymes. In addition, the proofreading exonucleases of Escherichia coli Pol I and T4 DNA polymerases have been found to remove mispairs caused by abasic sites and oxidative lesions, respectively, resulting in lowered polymerase error rates. However, the magnitude of the exonuclease effect is small (less than 10-fold), and highly dependent upon the DNA polymerase-exonuclease. We have studied proofreading exonuclease removal of alkylation damage in the HSV-tk forward assay. We observed no significant reduction in the magnitude of the mutant frequency vs. dose-response curves when N-methyl-N-nitrosourea or ENU-treated templates were used in exonuclease-proficient Klenow polymerase reactions, as compared to the exonuclease-deficient polymerase reactions. Thus, available data suggest that proofreading excision of endogenous lesion mispairs does occur, but the efficiency is dependent upon the lesion and the DNA polymerase-exonuclease studied.
在未受损的DNA模板上进行合成时,DNA聚合酶通过碱基掺入、引物-模板延伸和校对切除等生化步骤来区分正确和错误的底物。根据这些识别机制,对近期有关无碱基、烷基化和氧化损伤的DNA聚合酶处理的研究进行了综述。DNA合成的抑制源于聚合酶对几何形状不正确的模板碱基或3'末端碱基对的正确识别而无法利用。因此,跨损伤合成的效率与含有损伤的DNA的物理结构有关。然而,酶结构和动力学的变化导致跨损伤合成效率也取决于DNA聚合酶。聚合酶错误插入事件的概率较低,会产生一个3'损伤末端,其在几何形状上比正确的损伤碱基对更有利,从而导致诱变的跨损伤合成。例如,聚合酶α和聚合酶β似乎都需要形成稳定的3'引物-模板结构才能有效地进行无碱基位点的跨损伤合成。然而,这两种酶在稳定DNA结构的确切分子组成上有所不同,导致不同的突变特异性。类似的机制可能适用于氧化损伤,在氧化损伤中也观察到了取决于DNA聚合酶的突变特异性。体外反应条件也会影响DNA聚合酶对损伤的处理。使用体外单纯疱疹病毒胸苷激酶(HSV-tk)基因正向突变试验,我们证明高浓度的dNTP底物会影响使用烷基化模板进行跨损伤合成的诱变特异性。使用经N-乙基-N-亚硝基脲(ENU)修饰的模板时,在1000微摩尔[dNTP]浓度下,核酸外切酶缺陷型Klenow聚合酶导致G→A转换突变产生的错误频率相对于50微摩尔[dNTP]时高出四倍,这与etO6G.T错配延伸效率的提高一致。此外,当聚合酶反应中含有50微摩尔dNTP时,相对于1000微摩尔dNTP,其他ENU诱导的聚合酶错误频率受到抑制。作为聚合酶错误识别机制的校对效率反映了3'→5'核酸外切酶去除错配与下一个正确核苷酸聚合这两个竞争过程之间的平衡。相对于具有校对功能的酶,缺乏校对核酸外切酶的聚合酶通常表现出增强的无碱基位点跨损伤合成能力。此外,已发现大肠杆菌Pol I和T4 DNA聚合酶的校对核酸外切酶分别能去除由无碱基位点和氧化损伤引起的错配,从而降低聚合酶的错误率。然而,核酸外切酶的作用程度较小(小于10倍),并且高度依赖于DNA聚合酶-核酸外切酶。我们在HSV-tk正向试验中研究了校对核酸外切酶对烷基化损伤的去除作用。与核酸外切酶缺陷型聚合酶反应相比,当在具有核酸外切酶活性的Klenow聚合酶反应中使用N-甲基-N-亚硝基脲或ENU处理的模板时,我们观察到突变频率与剂量-反应曲线的幅度没有显著降低。因此,现有数据表明内源性损伤错配的校对切除确实会发生,但效率取决于所研究的损伤和DNA聚合酶-核酸外切酶。