Pérez-Pomares F, Ferrer J, Camacho M, Pire C, LLorca F, Bonete M J
División de Bioquímica, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain.
Biochim Biophys Acta. 1999 Feb 2;1426(3):513-25. doi: 10.1016/s0304-4165(98)00174-3.
The pH dependence of kinetic parameters for a competitive inhibitor (glutarate) was determined in order to obtain information on the chemical mechanism for NAD-dependent glutamate dehydrogenase from Halobacterium salinarum. The maximum velocity is pH dependent, decreasing at low pHs giving a pK value of 7.19+/-0.13, while the V/K for l-glutamate at 30 degrees C decreases at low and high pHs, yielding pK values of 7.9+/-0.2 and 9.8+/-0.2, respectively. The glutarate pKis profile decreases at high pHs, yielding a pK of 9. 59+/-0.09 at 30 degrees C. The values of ionization heat calculated from the change in pK with temperature are: 1.19 x 10(4), 5.7 x 10(3), 7 x 10(3), 6.6 x 10(3) cal mol-1, for the residues involved. All these data suggest that the groups required for catalysis and/or binding are lysine, histidine and tyrosine. The enzyme shows a time-dependent loss in glutamate oxidation activity when incubated with diethyl pyrocarbonate (DEPC). Inactivation follows pseudo-first-order kinetics with a second-order rate constant of 53 M-1min-1. The pKa of the titratable group was pK1=6.6+/-0.6. Inactivation with ethyl acetimidate also shows pseudo-first-order kinetics as well as inactivation with TNM yielding second-order constants of 1.2 M-1min-1 and 2.8 M-1min-1, and pKas of 8.36 and 9.0, respectively. The proposed mechanism involves hydrogen binding of each of the two carboxylic groups to tyrosyl residues; histidine interacts with one of the N-hydrogens of the l-glutamate amino group. We also corroborate the presence of a conservative lysine that has a remarkable ability to coordinate a water molecule that would act as general base.
为了获取有关嗜盐菌NAD依赖型谷氨酸脱氢酶化学机制的信息,我们测定了竞争性抑制剂(戊二酸)动力学参数的pH依赖性。最大反应速度依赖于pH,在低pH时降低,pK值为7.19±0.13,而30℃下L-谷氨酸的V/K在低pH和高pH时均降低,pK值分别为7.9±0.2和9.8±0.2。戊二酸的pKis曲线在高pH时降低,30℃下pK为9.59±0.09。根据pK随温度的变化计算出的各相关残基的电离热分别为:1.19×10⁴、5.7×10³、7×10³、6.6×10³cal mol⁻¹。所有这些数据表明,催化和/或结合所需的基团为赖氨酸、组氨酸和酪氨酸。当该酶与焦碳酸二乙酯(DEPC)孵育时,其谷氨酸氧化活性会出现时间依赖性损失。失活遵循假一级动力学,二级速率常数为53 M⁻¹min⁻¹。可滴定基团的pKa为pK1 = 6.6±0.6。用乙亚胺酸乙酯进行失活也显示出假一级动力学,用TNM进行失活的二级常数分别为1.2 M⁻¹min⁻¹和2.8 M⁻¹min⁻¹,pKa分别为8.36和9.0。所提出的机制涉及两个羧基中的每一个与酪氨酰残基形成氢键;组氨酸与L-谷氨酸氨基的一个N-氢相互作用。我们还证实了存在一个保守的赖氨酸,它具有显著的能力来配位一个可作为通用碱的水分子。