Jenkins B J, Le F, Gonda T J
Hanson Centre for Cancer Research and Division of Human Immunology, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia 5000, Australia.
J Biol Chem. 1999 Mar 26;274(13):8669-77. doi: 10.1074/jbc.274.13.8669.
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMRalpha) and a common signal-transducing beta-subunit (hbetac) that is shared with the interleukin-3 and -5 receptors. We have previously identified a constitutively active extracellular point mutant of hbetac, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287). This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMRalpha (mGMRalpha) subunit, since introduction of mGMRalpha, but not hGMRalpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence. Experiments utilizing mouse/human chimeric GMRalpha subunits indicated that the species specificity lies in the extracellular domain of GMRalpha. Importantly, the requirement for mGMRalpha correlated with the ability of I374N (but not wild-type hbetac) to constitutively associate with mGMRalpha. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMRalpha surface expression. Taken together, these findings suggest a critical role for association with GMRalpha in the constitutive activity of I374N.