Motten A G, Martínez L J, Holt N, Sik R H, Reszka K, Chignell C F, Tonnesen H H, Roberts J E
Laboratory of Molecular Biophysics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
Photochem Photobiol. 1999 Mar;69(3):282-7. doi: 10.1562/0031-8655(1999)069<0282:psoad>2.3.co;2.
Most drugs used in the treatment of malaria produce phototoxic side effects in both the skin and the eye. Cutaneous and ocular effects that may be caused by light include changes in skin pigmentation, corneal opacity, cataract formation and other visual disturbances including irreversible retinal damage (retinopathy) leading to blindness. The mechanism for these reactions in humans is unknown. We irradiated a number of antimalarial drugs (amodiaquine, chloroquine, hydroxychloroquine, mefloquine, primaquine and quinacrine) with light (lambda > 300 nm) and conducted electron paramagnetic resonance (EPR) and laser flash photolysis studies to determine the possible active intermediates produced. Each antimalarial drug produced at least one EPR adduct with the spin-trap 5,5-dimethyl-1-pyrroline N-oxide in benzene: superoxide/hydroperoxyl adducts (chloroquine, mefloquine, quinacrine, amodiaquine and quinine), carbon-centered radical adducts (all but primaquine), or a nitrogen-centered radical adduct only (primaquine). In ethanol all drugs except primaquine produced some superoxide/hydroperoxyl adduct, with quinine, quinacrine, and hydroxychloroquine also producing the ethoxyl adduct. As detected with flash photolysis and steady-state techniques, mefloquine, quinine, amodiquine and a photoproduct of quinacrine produced singlet oxygen ([symbol: see text]delta = 0.38; [symbol: see text]delta = 0.36; [symbol: see text]delta = 0.011; [symbol: see text]delta = 0.013 in D2O, pD7), but only primaquine quenched singlet oxygen efficiently (2.6 x 10(8) M-1 s-1 in D2O, pD7). Because malaria is a disease most prevalent in regions of high light intensity, protective measures (clothing, sunblock, sunglasses or eye wraps) should be recommended when administering antimalarial drugs.
大多数用于治疗疟疾的药物会在皮肤和眼睛产生光毒性副作用。光照可能导致的皮肤和眼部效应包括皮肤色素沉着变化、角膜混浊、白内障形成以及其他视觉障碍,包括导致失明的不可逆视网膜损伤(视网膜病变)。这些反应在人体中的机制尚不清楚。我们用光(波长>300nm)照射了多种抗疟药物(阿莫地喹、氯喹、羟氯喹、甲氟喹、伯氨喹和奎纳克林),并进行了电子顺磁共振(EPR)和激光闪光光解研究,以确定可能产生的活性中间体。每种抗疟药物在苯中与自旋捕捉剂5,5-二甲基-1-吡咯啉N-氧化物至少产生一种EPR加合物:超氧化物/氢过氧自由基加合物(氯喹、甲氟喹、奎纳克林、阿莫地喹和奎宁)、碳中心自由基加合物(除伯氨喹外的所有药物)或仅氮中心自由基加合物(伯氨喹)。在乙醇中,除伯氨喹外的所有药物都产生了一些超氧化物/氢过氧自由基加合物,奎宁、奎纳克林和羟氯喹还产生了乙氧基加合物。用光解闪光和稳态技术检测到,甲氟喹、奎宁、阿莫地喹和奎纳克林的一种光产物产生单线态氧(在D2O,pD7中,δ=0.38;δ=0.36;δ=0.011;δ=0.013),但只有伯氨喹能有效猝灭单线态氧(在D2O,pD7中为2.6×10^8 M^-1 s^-1)。由于疟疾是一种在高光照强度地区最普遍的疾病,在使用抗疟药物时应建议采取保护措施(衣物、防晒霜、太阳镜或眼罩)。