Deckert-Schlüter M
Verh Dtsch Ges Pathol. 1998;82:9-22.
Toxoplasmosis has gained particular attention in the AIDS era as the most common opportunistic encephalitis in HIV-infected patients. Since there are important parallels between the human and rodent infection, experimental murine toxoplasmosis is widely used to study the immune reactions to this protozoal parasite. Oral application of low-virulent Toxoplasma (T.) gondii cysts leads to a biphasic disease characterized by an acute, generalized phase followed by a chronic stage confined to the brain, where an encephalitis with persistence of the parasite develops. Immunity to T. gondii is T cell mediated, and there is increasing evidence for a critical role of cytokines for an effective immune response. In order to address the functional role of interferon (IFN)-gamma in toxoplasmosis, we took advantage of mice lacking the IFN-gamma-receptor. Inactivation of the IFN-gamma-receptor rendered mice highly susceptible to T. gondii, and they died of a fulminant acute toxoplasmosis. Among the various organs affected, hepatitis was severe enough to cause death. In contrast to wild type animals, IFN-gamma-receptor-deficient mice were unable to activate their macrophages as evidenced by a lack of major histocompatibility complex (MHC) class II antigen induction and the absence of an upregulation of tumor necrosis factor (TNF)-alpha and inducible nitric oxide synthase (iNOS) mRNA transcripts, two macrophage effector molecules. These observations prompted the investigation of TNF- and TNF-receptor-mediated effects in toxoplasmosis by use of mice deficient in either the TNF-receptor type 1 (TNFR1) and/or the TNF-receptor type 2 (TNFR2). The lethal outcome of T. gondii-infected TNFR1/2- and TNFR1-deficient mice, but not of TNFR2-deficient and wild type animals, illustrated the important role of TNF-alpha and TNFR1-mediated signalling, respectively, in this infection. Histopathology attributed death of TNFR1- and TNFR1/2-deficient mice to a severe, necrotizing encephalitis. Unrestricted intracerebral parasite replication in these strains was associated with reduced numbers of iNOS+ leukocytes and a lack of iNOS mRNA induction in their brains as compared to resistant wild type and TNFR2-deficient mice. To precisely identify the cellular sources of cytokines in the brain, flow cytometry of leukocytes isolated from the brain, in situ hybridization, immunohistochemistry and RT-PCR analysis of cytokine mRNA transcripts of magnetically purified leukocyte populations were performed. These studies disclosed that both CD4+, CD8+ T lymphocytes and macrophages recruited to the brain as well as resident cell populations of the CNS including neurons, astrocytes and microglia contributed to the intracerebral cytokine synthesis. Each population was characterized by a specific cytokine pattern. Interestingly, activation of brain cells is a hallmark of Toxoplasma encephalitis. The marked induction of a variety of immunologically important cell surface molecules as MHC class I and II antigens, cell adhesion molecules and their ligands on microglia points to a particular important role of this cell type for the immune response to T. gondii, since the expression of these molecules is a prerequisite for cellular interactions with T cells. The observation of a prominent interleukin (IL)-10 production in the T. gondii-infected brain initiated studies addressing the function of this powerful immunosuppressive mediator in chronic Toxoplasma encephalitis. Neutralization experiments revealed that IL-10 facilitates persistence of the parasite in the brain by downregulating the intracerebral immune response. On the other hand, IL-10 may exert a regulatory role and may be necessary to prevent immunopathological effects of an uncontrolled immune response. In conclusion, these studies demonstrate the important role of the cytokines IFN-gamma and TNF-alpha and their receptors, respectively, for an effective control of T. gondii. In the CNS, the target organ of the parasite, a
在艾滋病时代,弓形虫病作为HIV感染患者中最常见的机会性脑炎受到了特别关注。由于人类和啮齿动物感染之间存在重要的相似之处,实验性小鼠弓形虫病被广泛用于研究对这种原生动物寄生虫的免疫反应。口服低毒力的刚地弓形虫囊肿会导致一种双相疾病,其特征是急性期全身性发作,随后是局限于脑部的慢性期,在此阶段会发展为伴有寄生虫持续存在的脑炎。对弓形虫的免疫是由T细胞介导的,并且越来越多的证据表明细胞因子在有效免疫反应中起关键作用。为了探讨干扰素(IFN)-γ在弓形虫病中的功能作用,我们利用了缺乏IFN-γ受体的小鼠。IFN-γ受体的失活使小鼠对弓形虫高度易感,它们死于暴发性急性弓形虫病。在受影响的各个器官中,肝炎严重到足以导致死亡。与野生型动物相比,IFN-γ受体缺陷型小鼠无法激活其巨噬细胞,这表现为缺乏主要组织相容性复合体(MHC)II类抗原诱导,以及肿瘤坏死因子(TNF)-α和诱导型一氧化氮合酶(iNOS)mRNA转录本上调缺失,这两种都是巨噬细胞效应分子。这些观察结果促使我们通过使用缺乏肿瘤坏死因子受体1型(TNFR1)和/或肿瘤坏死因子受体2型(TNFR2)的小鼠来研究TNF和TNF受体介导的在弓形虫病中的作用。感染弓形虫的TNFR1/2缺陷型和TNFR1缺陷型小鼠的致死结局,但TNFR2缺陷型和野生型动物没有,分别说明了TNF-α和TNFR1介导的信号传导在这种感染中的重要作用。组织病理学将TNFR1和TNFR1/2缺陷型小鼠的死亡归因于严重的坏死性脑炎。与抗性野生型和TNFR2缺陷型小鼠相比,这些品系中不受限制的脑内寄生虫复制与iNOS+白细胞数量减少以及其脑中iNOS mRNA诱导缺失有关。为了精确确定脑中细胞因子的细胞来源,对从脑中分离的白细胞进行了流式细胞术、原位杂交、免疫组织化学以及对磁性纯化白细胞群体的细胞因子mRNA转录本进行了RT-PCR分析。这些研究表明,募集到脑中的CD4+、CD8+ T淋巴细胞和巨噬细胞以及中枢神经系统的驻留细胞群体,包括神经元、星形胶质细胞和小胶质细胞,都参与了脑内细胞因子合成。每个群体都具有特定的细胞因子模式。有趣的是,脑细胞的激活是弓形虫脑炎的一个标志。在小胶质细胞上多种免疫重要细胞表面分子如MHC I类和II类抗原、细胞粘附分子及其配体的显著诱导,表明这种细胞类型在对弓形虫的免疫反应中具有特别重要的作用,因为这些分子的表达是细胞与T细胞相互作用的先决条件。在弓形虫感染的脑中观察到显著的白细胞介素(IL)-10产生,这引发了关于这种强大的免疫抑制介质在慢性弓形虫脑炎中功能的研究。中和实验表明,IL-10通过下调脑内免疫反应促进寄生虫在脑中的持续存在。另一方面,IL-10可能发挥调节作用,并且可能是预防不受控制的免疫反应的免疫病理效应所必需的。总之,这些研究分别证明了细胞因子IFN-γ和TNF-α及其受体在有效控制弓形虫方面的重要作用。在寄生虫的靶器官中枢神经系统中,一种……