Nurizzo D, Cutruzzolà F, Arese M, Bourgeois D, Brunori M, Cambillau C, Tegoni M
Architecture et Fonction des Macromolécules Biologiques, UPR9039-CNRS, IBSM, 31, Ch. Joseph Aiguier, Marseille Cedex 20, France.
J Biol Chem. 1999 May 21;274(21):14997-5004. doi: 10.1074/jbc.274.21.14997.
The structures of nitrite reductase from Paracoccus denitrificans GB17 (NiR-Pd) and Pseudomonas aeruginosa (NiR-Pa) have been described for the oxidized and reduced state (Fülöp, V., Moir, J. W. B., Ferguson, S. J., and Hajdu, J. (1995) Cell 81, 369-377; Nurizzo, D., Silvestrini, M. C., Mathieu, M., Cutruzzolà, F., Bourgeois, D., Fülöp, V., Hajdu, J., Brunori, M., Tegoni, M., and Cambillau, C. (1997) Structure 5, 1157-1171; Nurizzo, D., Cutruzzolà, F., Arese, M., Bourgeois, D., Brunori, M., Cambillau, C. , and Tegoni, M. (1998) Biochemistry 37, 13987-13996). Major conformational rearrangements are observed in the extreme states although they are more substantial in NiR-Pd. The four structures differ significantly in the c heme domains. Upon reduction, a His17/Met106 heme-ligand switch is observed in NiR-Pd together with concerted movements of the Tyr in the distal site of the d1 heme (Tyr10 in NiR-Pa, Tyr25 in NiR-Pd) and of a loop of the c heme domain (56-62 in NiR-Pa, 99-116 in NiR-Pd). Whether the reduction of the c heme, which undergoes the major rearrangements, is the trigger of these movements is the question addressed by our study. This conformational reorganization is not observed in the partially reduced species, in which the c heme is partially or largely (15-90%) reduced but the d1 heme is still oxidized. These results suggest that the d1 heme reduction is likely to be responsible of the movements. We speculate about the mechanistic explanation as to why the opening of the d1 heme distal pocket only occurs upon electron transfer to the d1 heme itself, to allow binding of the physiological substrate NO2- exclusively to the reduced metal center.
反硝化副球菌GB17(NiR-Pd)和铜绿假单胞菌(NiR-Pa)亚硝酸还原酶在氧化态和还原态下的结构已有报道(Fülöp, V., Moir, J. W. B., Ferguson, S. J., and Hajdu, J. (1995) Cell 81, 369 - 377; Nurizzo, D., Silvestrini, M. C., Mathieu, M., Cutruzzolà, F., Bourgeois, D., Fülöp, V., Hajdu, J., Brunori, M., Tegoni, M., and Cambillau, C. (1997) Structure 5, 1157 - 1171; Nurizzo, D., Cutruzzolà, F., Arese, M., Bourgeois, D., Brunori, M., Cambillau, C., and Tegoni, M. (1998) Biochemistry 37, 13987 - 13996)。在极端状态下观察到了主要的构象重排,不过在NiR-Pd中更为显著。这四种结构在血红素结构域上有显著差异。还原时,在NiR-Pd中观察到His17/Met106血红素配体切换,同时d1血红素远端位点的Tyr(NiR-Pa中的Tyr10,NiR-Pd中的Tyr25)和c血红素结构域的一个环(NiR-Pa中的56 - 62,NiR-Pd中的99 - 116)协同移动。经历主要重排的c血红素的还原是否是这些移动的触发因素,是我们研究要解决的问题。在部分还原的物种中未观察到这种构象重组,在这些物种中c血红素部分或大部分(15 - 90%)被还原,但d1血红素仍被氧化。这些结果表明d1血红素的还原可能是这些移动的原因。我们推测了关于为什么d1血红素远端口袋仅在电子转移到d1血红素本身时才打开,以使生理底物NO2-仅与还原的金属中心结合的机理解释。