Macháty Z, Wang W H, Day B N, Prather R S
Department of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
Biol Reprod. 1999 Jun;60(6):1384-91. doi: 10.1095/biolreprod60.6.1384.
The mechanism of Ca2+ release induced by modification of sulfhydryl groups and the subsequent activation of porcine oocytes were investigated. Thimerosal, a sulfhydryl-oxidizing compound, induced Ca2+ oscillation in matured oocytes. In thimerosal-preincubated oocytes, the amount of Ca2+ released after microinjection of inositol 1,4,5-trisphosphate (InsP3) or ryanodine increased strikingly, indicating that thimerosal potentiated both InsP3- and ryanodine-sensitive Ca2+ release pathways. Thimerosal also enhanced the sensitivity of oocytes to microinjected Ca2+ so that in pretreated oocytes a Ca2+ injection triggered a larger transient. Heparin at concentrations that normally block the InsP3-induced Ca2+ release were without effect; higher doses significantly increased the time leading up to the first spike. The thimerosal-induced Ca2+ release could not be blocked by procaine, and it did not require the formation of InsP3 since preinjection with neomycin did not prevent the oscillation. Immunocytochemistry revealed that thimerosal treatment destroyed the meiotic spindle, preventing further development, an effect that could be reversed by dithiothreitol. The combined thimerosal/dithiothreitol treatment triggered second polar body extrusion in 50% of the oocytes, and as a result of this activation scheme approximately 15% of the in vitro- and approximately 60% of the in vivo-matured oocytes developed to blastocyst during a 7-day culture in vitro.