Kang D E, Soriano S, Frosch M P, Collins T, Naruse S, Sisodia S S, Leibowitz G, Levine F, Koo E H
Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.
J Neurosci. 1999 Jun 1;19(11):4229-37. doi: 10.1523/JNEUROSCI.19-11-04229.1999.
Although an association between the product of the familial Alzheimer's disease (FAD) gene, presenilin 1 (PS1), and beta-catenin has been reported recently, the cellular consequences of this interaction are unknown. Here, we show that both the full length and the C-terminal fragment of wild-type or FAD mutant PS1 interact with beta-catenin from transfected cells and brains of transgenic mice, whereas E-cadherin and adenomatous polyposis coli (APC) are not detected in this complex. Inducible overexpression of PS1 led to increased association of beta-catenin with glycogen synthase kinase-3beta (GSK-3beta), a negative regulator of beta-catenin, and accelerated the turnover of endogenous beta-catenin. In support of this finding, the beta-catenin half-life was dramatically longer in fibroblasts deficient in PS1, and this phenotype was completely rescued by replacement of PS1, demonstrating that PS1 normally stimulates the degradation of beta-catenin. In contrast, overexpression of FAD-linked PS1 mutants (M146L and DeltaX9) failed to enhance the association between GSK-3beta and beta-catenin and interfered with the constitutive turnover of beta-catenin. In vivo confirmation was demonstrated in the brains of transgenic mice in which the expression of the M146L mutant PS1 was correlated with increased steady-state levels of endogenous beta-catenin. Thus, our results indicate that PS1 normally promotes the turnover of beta-catenin, whereas PS1 mutants partially interfere with this process, possibly by failing to recruit GSK-3beta into the PS1-beta-catenin complex. These findings raise the intriguing possibility that PS1-beta-catenin interactions and subsequent activities may be consequential for the pathogenesis of AD.
尽管最近有报道称家族性阿尔茨海默病(FAD)基因的产物早老素1(PS1)与β-连环蛋白之间存在关联,但这种相互作用的细胞后果尚不清楚。在这里,我们表明野生型或FAD突变型PS1的全长和C末端片段都与来自转基因小鼠转染细胞和大脑中的β-连环蛋白相互作用,而在该复合物中未检测到E-钙黏蛋白和腺瘤性息肉病大肠杆菌(APC)。PS1的诱导性过表达导致β-连环蛋白与糖原合酶激酶-3β(GSK-3β,β-连环蛋白的负调节因子)的结合增加,并加速内源性β-连环蛋白的周转。支持这一发现的是,在缺乏PS1的成纤维细胞中,β-连环蛋白的半衰期显著延长,并且通过替换PS1完全挽救了该表型,表明PS1通常刺激β-连环蛋白的降解。相反,FAD相关的PS1突变体(M146L和DeltaX9)的过表达未能增强GSK-3β与β-连环蛋白之间的结合,并干扰β-连环蛋白的组成型周转。在体内的转基因小鼠大脑中得到了证实,其中M146L突变型PS1的表达与内源性β-连环蛋白的稳态水平增加相关。因此,我们的结果表明,PS1通常促进β-连环蛋白的周转,而PS1突变体部分干扰这一过程,可能是由于未能将GSK-3β招募到PS1-β-连环蛋白复合物中。这些发现提出了一个有趣的可能性,即PS1-β-连环蛋白相互作用及其后续活动可能与AD的发病机制有关。