Suppr超能文献

利用合成表型和体内交联技术绘制SecY(PrlA)和SecE(PrlG)的界面图谱。

Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking.

作者信息

Harris C R, Silhavy T J

机构信息

Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

J Bacteriol. 1999 Jun;181(11):3438-44. doi: 10.1128/JB.181.11.3438-3444.1999.

Abstract

SecY and SecE are integral cytoplasmic membrane proteins that form an essential part of the protein translocation machinery in Escherichia coli. Sites of direct contact between these two proteins have been suggested by the allele-specific synthetic phenotypes exhibited by pairwise combinations of prlA and prlG signal sequence suppressor mutations in these genes. We have introduced cysteine residues within the first periplasmic loop of SecY and the second periplasmic loop of SecE, at a specific pair of positions identified by this genetic interaction. The expression of the cysteine mutant pair results in a dominant lethal phenotype that requires the presence of DsbA, which catalyzes the formation of disulfide bonds. A reducible SecY-SecE complex is also observed, demonstrating that these amino acids must be sufficiently proximal to form a disulfide bond. The use of cysteine-scanning mutagenesis enabled a second contact site to be discovered. Together, these two points of contact allow the modeling of a limited region of quaternary structure, establishing the first characterized site of interaction between these two proteins. This study proves that actual points of protein-protein contact can be identified by using synthetic phenotypes.

摘要

SecY和SecE是整合在细胞质膜上的蛋白质,它们是大肠杆菌中蛋白质转运机制的重要组成部分。prlA和prlG信号序列抑制突变在这些基因中的成对组合所表现出的等位基因特异性合成表型,提示了这两种蛋白质之间的直接接触位点。我们在SecY的第一个周质环和SecE的第二个周质环内,于通过这种遗传相互作用确定的特定一对位置引入了半胱氨酸残基。半胱氨酸突变对的表达导致显性致死表型,这需要催化二硫键形成的DsbA的存在。还观察到了一种可还原的SecY-SecE复合物,表明这些氨基酸必须足够接近才能形成二硫键。使用半胱氨酸扫描诱变发现了第二个接触位点。这两个接触点共同使得能够对四级结构的一个有限区域进行建模,确定了这两种蛋白质之间第一个有特征的相互作用位点。这项研究证明,可以通过使用合成表型来识别蛋白质-蛋白质接触的实际位点。

相似文献

1
Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking.
J Bacteriol. 1999 Jun;181(11):3438-44. doi: 10.1128/JB.181.11.3438-3444.1999.
3
Mapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis.
J Biol Chem. 2001 Aug 31;276(35):32559-66. doi: 10.1074/jbc.M103912200. Epub 2001 Jul 9.
6
Nearest neighbor analysis of the SecYEG complex. 1. Identification of a SecY-SecG interface.
Biochemistry. 2003 Jun 24;42(24):7434-41. doi: 10.1021/bi034331a.
8
A cytoplasmic domain is important for the formation of a SecY-SecE translocator complex.
Proc Natl Acad Sci U S A. 1994 May 10;91(10):4539-43. doi: 10.1073/pnas.91.10.4539.
9
PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains.
EMBO J. 1993 Sep;12(9):3391-8. doi: 10.1002/j.1460-2075.1993.tb06013.x.

引用本文的文献

1
Mechanism of Protein Translocation by the Sec61 Translocon Complex.
Cold Spring Harb Perspect Biol. 2023 Jan 3;15(1):a041250. doi: 10.1101/cshperspect.a041250.
2
The Dynamic SecYEG Translocon.
Front Mol Biosci. 2021 Apr 15;8:664241. doi: 10.3389/fmolb.2021.664241. eCollection 2021.
3
Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62.
Nat Struct Mol Biol. 2021 Feb;28(2):162-172. doi: 10.1038/s41594-020-00541-x. Epub 2021 Jan 4.
4
SecA-Mediated Protein Translocation through the SecYEG Channel.
Microbiol Spectr. 2019 Jul;7(4). doi: 10.1128/microbiolspec.PSIB-0028-2019.
5
Crosslinking and Reconstitution Approaches to Study Protein Transport.
Protein J. 2019 Jun;38(3):229-235. doi: 10.1007/s10930-019-09842-7.
6
Genetic Analysis of Protein Translocation.
Protein J. 2019 Jun;38(3):217-228. doi: 10.1007/s10930-019-09813-y.
8
Crystal structure of a substrate-engaged SecY protein-translocation channel.
Nature. 2016 Mar 17;531(7594):395-399. doi: 10.1038/nature17163. Epub 2016 Mar 7.
9
Channel crossing: how are proteins shipped across the bacterial plasma membrane?
Philos Trans R Soc Lond B Biol Sci. 2015 Oct 5;370(1679). doi: 10.1098/rstb.2015.0025.
10
Emerging themes in SecA2-mediated protein export.
Nat Rev Microbiol. 2012 Nov;10(11):779-89. doi: 10.1038/nrmicro2874. Epub 2012 Sep 24.

本文引用的文献

1
General nature of the genetic code for proteins.
Nature. 1961 Dec 30;192:1227-32. doi: 10.1038/1921227a0.
3
Bacterial preprotein translocase: mechanism and conformational dynamics of a processive enzyme.
Mol Microbiol. 1998 Feb;27(3):511-8. doi: 10.1046/j.1365-2958.1998.00713.x.
4
Biogenesis of the gram-negative bacterial envelope.
Cell. 1997 Nov 28;91(5):567-73. doi: 10.1016/s0092-8674(00)80444-4.
5
Protein translocation in the three domains of life: variations on a theme.
Cell. 1997 Nov 28;91(5):563-6. doi: 10.1016/s0092-8674(00)80443-2.
7
Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain.
Appl Environ Microbiol. 1997 Jun;63(6):2421-31. doi: 10.1128/aem.63.6.2421-2431.1997.
9
Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes.
Annu Rev Biochem. 1996;65:271-303. doi: 10.1146/annurev.bi.65.070196.001415.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验