Suppr超能文献

刚性颗粒的流体动力学特性:不同建模与计算方法的比较

Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures.

作者信息

Carrasco B, García de la Torre J

机构信息

Departamento de Química Física, Facultad de Química, Universidad de Murcia, 30071 Murcia, Spain.

出版信息

Biophys J. 1999 Jun;76(6):3044-57. doi: 10.1016/S0006-3495(99)77457-6.

Abstract

The hydrodynamic properties of rigid particles are calculated from models composed of spherical elements (beads) using theories developed by Kirkwood, Bloomfield, and their coworkers. Bead models have usually been built in such a way that the beads fill the volume occupied by the particles. Sometimes the beads are few and of varying sizes (bead models in the strict sense), and other times there are many small beads (filling models). Because hydrodynamic friction takes place at the molecular surface, another possibility is to use shell models, as originally proposed by Bloomfield. In this work, we have developed procedures to build models of the various kinds, and we describe the theory and methods for calculating their hydrodynamic properties, including approximate methods that may be needed to treat models with a very large number of elements. By combining the various possibilities of model building and hydrodynamic calculation, several strategies can be designed. We have made a quantitative comparison of the performance of the various strategies by applying them to some test cases, for which the properties are known a priori. We provide guidelines and computational tools for bead modeling.

摘要

刚性颗粒的流体动力学性质是根据由球形元素(珠子)组成的模型,利用柯克伍德、布卢姆菲尔德及其同事所发展的理论来计算的。珠子模型通常以这样的方式构建,即珠子填充颗粒所占据的体积。有时珠子数量少且大小各异(严格意义上的珠子模型),有时则有许多小珠子(填充模型)。由于流体动力学摩擦发生在分子表面,另一种可能性是使用布卢姆菲尔德最初提出的壳模型。在这项工作中,我们开发了构建各种模型的程序,并描述了计算其流体动力学性质的理论和方法,包括处理具有大量元素的模型可能需要的近似方法。通过结合模型构建和流体动力学计算的各种可能性,可以设计出几种策略。我们通过将各种策略应用于一些先验已知性质的测试案例,对它们的性能进行了定量比较。我们提供了珠子建模的指导方针和计算工具。

相似文献

1
3
Building hydrodynamic bead-shell models for rigid bioparticles of arbitrary shape.
Biophys Chem. 2001 Dec 25;94(3):265-74. doi: 10.1016/s0301-4622(01)00244-7.
5
GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules.
Biophys J. 2018 Sep 4;115(5):782-800. doi: 10.1016/j.bpj.2018.07.015. Epub 2018 Jul 24.
9
Hydrodynamic modeling: the solution conformation of macromolecules and their complexes.
Methods Cell Biol. 2008;84:327-73. doi: 10.1016/S0091-679X(07)84012-X.
10
Toward an Accurate Modeling of Hydrodynamic Effects on the Translational and Rotational Dynamics of Biomolecules in Many-Body Systems.
J Phys Chem B. 2015 Jul 2;119(26):8425-39. doi: 10.1021/acs.jpcb.5b04675. Epub 2015 Jun 23.

引用本文的文献

2
Computational fluid dynamics method for determining the rotational diffusion coefficient of cells.
Phys Fluids (1994). 2024 Apr;36(4). doi: 10.1063/5.0193862. Epub 2024 Apr 9.
4
Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment.
Phys Rep. 2021 Jul 25;921:1-53. doi: 10.1016/j.physrep.2021.03.003. Epub 2021 Mar 24.
5
Biophysical characterisation of human LincRNA-p21 sense and antisense Alu inverted repeats.
Nucleic Acids Res. 2022 Jun 10;50(10):5881-5898. doi: 10.1093/nar/gkac414.
6
Bead-Based Hydrodynamic Simulations of Rigid Magnetic Micropropellers.
Front Robot AI. 2018 Sep 19;5:109. doi: 10.3389/frobt.2018.00109. eCollection 2018.
7
Molecular Modeling to Estimate the Diffusion Coefficients of Drugs and Other Small Molecules.
Molecules. 2020 Nov 16;25(22):5340. doi: 10.3390/molecules25225340.
8
The Effect of Number of Arms on the Aggregation Behavior of Thermoresponsive Poly(N-isopropylacrylamide) Star Polymers.
Chemphyschem. 2020 Jun 16;21(12):1258-1271. doi: 10.1002/cphc.202000273. Epub 2020 Jun 2.
9
HIERARCHICAL ORTHOGONAL MATRIX GENERATION AND MATRIX-VECTOR MULTIPLICATIONS IN RIGID BODY SIMULATIONS.
SIAM J Sci Comput. 2018;40(3):A1345-A1361. doi: 10.1137/17M1117744. Epub 2018 May 10.
10
Fluctuation-induced hydrodynamic coupling in an asymmetric, anisotropic dumbbell.
Eur Phys J E Soft Matter. 2019 Mar 28;42(3):39. doi: 10.1140/epje/i2019-11799-5.

本文引用的文献

3
HYDRO: a computer program for the prediction of hydrodynamic properties of macromolecules.
Biophys J. 1994 Aug;67(2):530-1. doi: 10.1016/S0006-3495(94)80512-0.
4
Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications.
Q Rev Biophys. 1981 Feb;14(1):81-139. doi: 10.1017/s0033583500002080.
5
Frictional coefficients of multisubunit structures. II. Application to proteins and viruses.
Biopolymers. 1967 Feb;5(2):149-59. doi: 10.1002/bip.1967.360050203.
6
Frictional coefficients of multisubunit structures. I. Theory.
Biopolymers. 1967 Feb;5(2):135-48. doi: 10.1002/bip.1967.360050202.
7
Shell model calculations of rotational diffusion coefficients.
Biochemistry. 1967 Jun;6(6):1650-8. doi: 10.1021/bi00858a011.
8
The structure of bovine serum albumin at low pH.
Biochemistry. 1966 Feb;5(2):684-9. doi: 10.1021/bi00866a039.
10
Frictional properties of nonspherical multisubunit structures. Application to tubules and cylinders.
Biopolymers. 1976 Jul;15(7):1397-408. doi: 10.1002/bip.1976.360150712.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验