Jörnvall H, Fowler A V, Zabin I
Biochemistry. 1978 Nov 28;17(24):5160-4. doi: 10.1021/bi00617a015.
Carboxymethylation with 14 C-labeled iodoacetate of cysteine residues in wild-type beta-galactosidase from Escherichia coli and in a defective beta-galactosidase from deletion mutant strain M15 was investigated in order to determine accessible positions in the tetrameric wild-type form and the dimeric mutant M15 protein. The extent of carboxymethylation, the effects on biological activity, antibody activation, physical stability, and the labeling of particular residues were studied. The results distinguish three groups of spatial relationships for cysteine residues in the protein, define possible regions for subunit interactions, and confirm that no cysteine residue is specifically involved in catalysis. Residue 1019 and to a lesser extent 498 are accessible in the tetrameric protein and probably represent exposed areas. In the M15 protein, these two, and three additional residues, at 76,387 and 600, were found to react significantly with reagent. One or more of the latter are suggested to be in the dimer-dimer interface. Complementation and activation by antibody are inhibited by carboxymethylation of M15 protein.