Holwerda B
Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA.
Biochem Biophys Res Commun. 1999 Jun 7;259(2):370-3. doi: 10.1006/bbrc.1999.0743.
Herpesvirus proteases require dimerization for activity, although crystallographic data indicate that each monomeric subunit possesses a well-separated and complete active site. This suggests that dimerization stabilizes the monomeric protease subunits in an active conformation. Chemical cross-linking with disuccinimidyl glutarate was used to capture human cytomegalovirus protease in its various conformations. The cross-linked protease retained activity under mildly chaotropic conditions (0.25 to 0.75 M urea) in contrast to non-cross-linked protease which lost activity. Identification of active protease species by incorporation of radioactive diisopropylfluorophosphate showed that in addition to cross-linked dimers, cross-linked protease monomers were responsible for a significant fraction of the total protease activity. These results are consistent with the hypothesis that herpesvirus protease activation occurs by stabilization of an active conformer in the dimer.