Klein E K, Austerlitz F, Larédo C
Laboratoire Evolution et Systématique, URA 2154, Université Paris XI, Bâtiment 362, Orsay Cedex, F-91405, France.
Theor Popul Biol. 1999 Jun;55(3):235-47. doi: 10.1006/tpbi.1998.1401.
In population genetics, under a neutral Wright-Fisher model, the scaling parameter straight theta=4Nmu represents twice the average number of new mutants per generation. The effective population size is N and mu is the mutation rate per sequence per generation. Watterson proposed a consistent estimator of this parameter based on the number of segregating sites in a sample of nucleotide sequences. We study the distribution of the Watterson estimator. Enlarging the size of the sample, we asymptotically set a Central Limit Theorem for the Watterson estimator. This exhibits asymptotic normality with a slow rate of convergence. We then prove the asymptotic efficiency of this estimator. In the second part, we illustrate the slow rate of convergence found in the Central Limit Theorem. To this end, by studying the confidence intervals, we show that the asymptotic Gaussian distribution is not a good approximation for the Watterson estimator.
在群体遗传学中,在中性的赖特 - 费希尔模型下,尺度参数θ = 4Nμ表示每代新突变体的平均数量的两倍。有效群体大小为N,μ是每代每个序列的突变率。沃特森基于核苷酸序列样本中的分离位点数提出了该参数的一个一致估计量。我们研究沃特森估计量的分布。通过扩大样本大小,我们为沃特森估计量渐近地建立了一个中心极限定理。这显示出渐近正态性,但收敛速度较慢。然后我们证明了该估计量的渐近有效性。在第二部分,我们说明了在中心极限定理中发现的收敛速度较慢的情况。为此,通过研究置信区间,我们表明渐近高斯分布对于沃特森估计量不是一个好的近似。