Suppr超能文献

Localization and comparative toxicity of methylsulfonyl-2,5- and 2,6-dichlorobenzene in the olfactory mucosa of mice.

作者信息

Bahrami F, Brittebo E B, Bergman A, Larsson C, Brandt I

机构信息

Department of Environmental Toxicology, Uppsala University, Sweden.

出版信息

Toxicol Sci. 1999 May;49(1):116-23. doi: 10.1093/toxsci/49.1.116.

Abstract

Several methylsulfonyl (MeSO2) metabolites formed from chlorinated aromatic hydrocarbons have been identified in human milk, lung, and body fat, as well as in the tissues of Baltic grey seals and arctic polar bears. The tissue localization and nasal toxicity of two methylsulfonyl-substituted dichlorobenzenes (diCl-MeSO2-B), with the chlorine atoms in the 2,5-, and 2,6- positions, were investigated in female NMRI and C57B1 mice. Using tape-section autoradiography, animals dosed i.v. with 14C-labeled 2,5-, or 2,6-(diCl-MeSO2-B) showed a preferential uptake of radioactivity in the olfactory mucosa and the tracheobronchial epithelium. Histopathology showed that 2,6-(diCl-MeSO2-B) is a potent toxicant that induces necrosis in the olfactory mucosa following a single dose as low as 4 mg/kg (i.p. injection), whereas 2,5-(diCl-MeSO2-B) induced no signs of toxicity in the olfactory mucosa at doses as high as 130 mg/kg (i.p. injection). Necrosis of the Bowman's glands was the first sign of 2,6-(diCl-MeSO2-B)-induced toxicity followed by degeneration of the neuroepithelium, which implies that the Bowman's gland may be the primary site of toxicity and degeneration of the neuroepithelium may be a secondary effect. Administration of the parent compounds, 1,3-dichlorobenzene and 1,4-dichlorobenzene, or the chlorinated analog 1,2,3-trichlorobenzene (85, 85, and 105 mg/kg, respectively; i.p. injection), induced no signs of toxicity in the olfactory mucosa. These and previous results suggest that 2,6-positioned chlorine atoms and an electron withdrawing substituent in the primary position is an arrangement that predisposes for toxicity in the olfactory mucosa.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验