Suppr超能文献

Relationship between modulation of the cerebellorubrospinal system in the in vitro turtle brain and changes in motor behavior in rats: effects of novel sigma ligands.

作者信息

Matsumoto R R, Bowen W D, de Costa B R, Houk J C

机构信息

Department of Physiology, Northwestern University Medical School, Chicago, IL, USA.

出版信息

Brain Res Bull. 1999 Mar 15;48(5):497-508. doi: 10.1016/s0361-9230(99)00029-5.

Abstract

Saturation and competition binding studies showed that the turtle brain contains sigma sites labeled by both [3H]di-o-tolylguanidine (DTG) and 3H-pentazocine. There was a significant correlation between the IC50 values of sigma ligands for [3H]DTG sites in the turtle vs. rat brain, suggesting that the sites are comparable in the two species. In contrast, 3H-pentazocine, which primarily labels sigma1 sites in the rodent brain, labels a heterogeneity of sites in the turtle brain. In extracellular recordings from the in vitro turtle brainstem, some sigma ligands enhanced the burst responses of red nucleus (RN) neurons (DTG, haloperidol, BD1031, BD1052, BD1069) while other sigma ligands decreased the burst responses (BD1047, BD1063). Control compounds (turtle Ringer vehicle control, opiate antagonist naloxone, atypical neuroleptic sulpiride) had no significant effects on the RN burst responses recorded from the in vitro turtle brain. The ED50s of the ligands for altering the burst responses in RN neurons from the turtle brain were correlated with their IC50s for turtle brain sites labeled with [3H]DTG, but not 3H-pentazocine; this pattern is identical to that previously reported in rats, where there is a correlation between the potencies of sigma ligands for producing dystonic postures after microinjection into the rat RN and their binding to rat brain sites labeled with [3H]DTG, but not 3H-pentazocine. When the novel sigma ligands were microinjected into the rat RN, dystonic postures were produced by ligands that increased the burst duration of RN neurons in the turtle brain. Novel sigma ligands that reduced the burst responses in the in vitro turtle brain have previously been reported to have no effects on their own when microinjected into the rat RN, but to block the dystonic postures produced by other sigma ligands. Taken together, the data suggest that the opposite effects of the novel ligands in the turtle electrophysiological studies represent the actions of agonists vs. antagonists, and that the directionality of the effects has predictive value for the expected motor effects of the drugs.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验