Suppr超能文献

Efficient nitroso group transfer from N-nitrosoindoles to nucleotides and 2'-deoxyguanosine at physiological pH. A new pathway for N-nitrosocompounds to exert genotoxicity.

作者信息

Lucas L T, Gatehouse D, Shuker D E

机构信息

Biomonitoring and Molecular Interactions Section, MRC Toxicology Unit, Hodgkin Building, University of Leicester, P. O. Box 138, Lancaster Road, Leicester LE1 9HN, United Kingdom.

出版信息

J Biol Chem. 1999 Jun 25;274(26):18319-26. doi: 10.1074/jbc.274.26.18319.

Abstract

The endogenous formation of N-nitrosoindoles is of concern since humans are exposed to a variety of naturally occurring and synthetic indolic compounds. As part of a study to evaluate the genotoxicity of N-nitrosoindoles, the reactions of three model compounds with purine nucleotides and 2'-deoxyguanosine at physiological pH were investigated. The profiles of reaction products were identical for each of the N-nitrosoindoles and three distinct pathways of reaction could be discerned. These pathways were: (i) depurination to the corresponding purine bases, (ii) deamination, coupled with depurination, to give hypoxanthine and xanthine, and (iii) formation of the novel nucleotide 2'-deoxyoxanosine monophosphate and its corresponding depurination product oxanine in reactions with 2'-deoxyguanosine monophosphate. 2'-Deoxyoxanosine and oxanine were observed in reactions with 2'-deoxyguanosine. Further studies showed that formation of all of these products could be rationalized by an initial transnitrosation step. These results suggest that, in contrast to many other genotoxic N-nitrosocompounds which are known to alkylate DNA, the genotoxicity of N-nitrosoindoles is likely to arise through transfer of the nitroso group to nucleophilic sites on the purine bases. All of the products resulting from transnitrosation by N-nitrosoindoles are potentially mutagenic. These findings reveal a new pathway for N-nitrosocompounds to exert genotoxicity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验