Guo C Y, Wang Y, Brautigan D L, Larner J M
Department of Radiation Oncology, University of Virginia Health Science System, Charlottesville, Virginia 22908, USA.
J Biol Chem. 1999 Jun 25;274(26):18715-20. doi: 10.1074/jbc.274.26.18715.
Ionizing radiation is known to activate multiple signal transduction pathways, but the targets of these pathways are poorly understood. Phosphorylation of histone H1 is thought to have a role in chromatin condensation/decondensation, and we asked whether ionizing radiation (IR) would alter H1 phosphorylation. Our data demonstrate that low doses of IR result in a dramatic, but transient, dephosphorylation of H1 isoforms. The in vivo IR-induced dephosphorylation of H1 is completely blocked by wortmannin and is abrogated in ataxia telangiectasia cells. Furthermore, we measured radiation-induced inhibition of cyclin dependent kinase activity and activation of histone H1 phosphatase activity. Both activities were affected by radiation-induced signals in an ATM-dependent manner. Thus, the rapid IR-induced dephosphorylation of H1 involves a pathway including ATM and a wortmannin-sensitive step leading to both inhibition of cyclin-dependent kinase activities as well as activation of H1 phosphatase(s).