Rogatsky I, Hittelman A B, Pearce D, Garabedian M J
Department of Microbiology and the Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA.
Mol Cell Biol. 1999 Jul;19(7):5036-49. doi: 10.1128/MCB.19.7.5036.
Glucocorticoids act through the glucocorticoid receptor (GR), which can function as a transcriptional activator or repressor, to elicit cytostatic and cytotoxic effects in a variety of cells. The molecular mechanisms regulating these events and the target genes affected by the activated receptor remain largely undefined. Using cultured human osteosarcoma cells as a model for the GR antiproliferative effect, we demonstrate that in U20S cells, GR activation leads to irreversible growth inhibition, apoptosis, and repression of Bcl2. This cytotoxic effect is mediated by GR's transcriptional repression function, since transactivation-deficient mutants and ligands still bring about apoptosis and Bcl2 down-regulation. In contrast, the antiproliferative effect of GR in SAOS2 cells is reversible, does not result in apoptosis or repression of Bcl2, and is a function of the receptor's ability to stimulate transcription. Thus, the cytotoxic versus cytostatic outcome of glucocorticoid treatment is cell context dependent. Interestingly, the cytostatic effect of glucocorticoids in SAOS2 cells involves multiple GR activation surfaces. GR mutants and ligands that disrupt individual transcriptional activation functions (activation function 1 [AF-1] and AF-2) or receptor dimerization fail to fully inhibit cellular proliferation and, remarkably, discriminate between the targets of GR's cytostatic action, the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1). Induction of p21(Cip1) is agonist dependent and requires AF-2 but not AF-1 or GR dimerization. In contrast, induction of p27(Kip1) is agonist independent, does not require AF-2 or AF-1, but depends on GR dimerization. Our findings indicate that multiple GR transcriptional regulatory mechanisms that employ distinct receptor surfaces are used to evoke either the cytostatic or cytotoxic response to glucocorticoids.
糖皮质激素通过糖皮质激素受体(GR)发挥作用,该受体可作为转录激活剂或抑制剂,在多种细胞中引发细胞生长抑制和细胞毒性作用。调节这些事件的分子机制以及受激活受体影响的靶基因在很大程度上仍不明确。以培养的人骨肉瘤细胞作为GR抗增殖作用的模型,我们证明在U20S细胞中,GR激活导致不可逆的生长抑制、细胞凋亡以及Bcl2的抑制。这种细胞毒性作用由GR的转录抑制功能介导,因为反式激活缺陷型突变体和配体仍能引发细胞凋亡和Bcl2下调。相比之下,GR在SAOS2细胞中的抗增殖作用是可逆的,不会导致细胞凋亡或Bcl2抑制,并且是受体刺激转录能力的一种功能。因此,糖皮质激素治疗的细胞毒性与细胞生长抑制结果取决于细胞背景。有趣的是,糖皮质激素在SAOS2细胞中的细胞生长抑制作用涉及多个GR激活表面。破坏单个转录激活功能(激活功能1 [AF-1]和AF-2)或受体二聚化的GR突变体和配体无法完全抑制细胞增殖,并且显著地区分了GR细胞生长抑制作用的靶标,即细胞周期蛋白依赖性激酶抑制剂p21(Cip1)和p27(Kip1)。p21(Cip1)的诱导依赖于激动剂,需要AF-2但不需要AF-1或GR二聚化。相比之下,p27(Kip1)的诱导不依赖于激动剂,不需要AF-2或AF-1,但依赖于GR二聚化。我们的研究结果表明,利用不同受体表面的多种GR转录调节机制被用于引发对糖皮质激素的细胞生长抑制或细胞毒性反应。