Suppr超能文献

聚合微管在神经生长锥中激活位点定向的F-肌动蛋白组装。

Polymerizing microtubules activate site-directed F-actin assembly in nerve growth cones.

作者信息

Rochlin M W, Dailey M E, Bridgman P C

机构信息

Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

出版信息

Mol Biol Cell. 1999 Jul;10(7):2309-27. doi: 10.1091/mbc.10.7.2309.

Abstract

We identify an actin-based protrusive structure in growth cones termed "intrapodium." Unlike filopodia, intrapodia are initiated exclusively within lamellipodia and elongate in a continuous (nonsaltatory) manner parallel to the plane of the dorsal plasma membrane causing a ridge-like protrusion. Intrapodia resemble the actin-rich structures induced by intracellular pathogens (e.g., Listeria) or by extracellular beads. Cytochalasin B inhibits intrapodial elongation and removal of cytochalasin B produced a burst of intrapodial activity. Electron microscopic studies revealed that lamellipodial intrapodia contain both short and long actin filaments oriented with their barbed ends toward the membrane surface or advancing end. Our data suggest an interaction between microtubule endings and intrapodia formation. Disruption of microtubules by acute nocodazole treatment decreased intrapodia frequency, and washout of nocodazole or addition of the microtubule-stabilizing drug Taxol caused a burst of intrapodia formation. Furthermore, individual microtubule ends were found near intrapodia initiation sites. Thus, microtubule ends or associated structures may regulate these actin-dependent structures. We propose that intrapodia are the consequence of an early step in a cascade of events that leads to the development of F-actin-associated plasma membrane specializations.

摘要

我们在生长锥中识别出一种基于肌动蛋白的突出结构,称为“内足”。与丝状伪足不同,内足仅在片状伪足内起始,并以连续(非跳跃)的方式平行于背侧质膜平面延伸,形成脊状突出。内足类似于由细胞内病原体(如李斯特菌)或细胞外珠子诱导的富含肌动蛋白的结构。细胞松弛素B抑制内足的延伸,去除细胞松弛素B会引发一阵内足活动。电子显微镜研究表明,片状伪足内足包含短肌动蛋白丝和长肌动蛋白丝,其带刺端朝向膜表面或前进端。我们的数据表明微管末端与内足形成之间存在相互作用。用急性诺考达唑处理破坏微管会降低内足频率,冲洗掉诺考达唑或添加微管稳定药物紫杉醇会引发一阵内足形成。此外,在靠近内足起始位点处发现了单个微管末端。因此,微管末端或相关结构可能调节这些肌动蛋白依赖性结构。我们提出,内足是导致F-肌动蛋白相关质膜特化发展的一系列事件早期步骤的结果。

相似文献

1
Polymerizing microtubules activate site-directed F-actin assembly in nerve growth cones.
Mol Biol Cell. 1999 Jul;10(7):2309-27. doi: 10.1091/mbc.10.7.2309.
2
Microtubule and Rac 1-dependent F-actin in growth cones.
J Cell Sci. 2003 Sep 15;116(Pt 18):3739-48. doi: 10.1242/jcs.00686. Epub 2003 Jul 30.
4
The cytoskeletons of isolated, neuronal growth cones.
Neuroscience. 1987 Jun;21(3):977-89. doi: 10.1016/0306-4522(87)90052-2.
5
Growth cone turning induced by direct local modification of microtubule dynamics.
J Neurosci. 2002 Nov 1;22(21):9358-67. doi: 10.1523/JNEUROSCI.22-21-09358.2002.
6
Formation of filopodia-like bundles in vitro from a dendritic network.
J Cell Biol. 2003 Mar 17;160(6):951-62. doi: 10.1083/jcb.200208059.
7
Recruitment of the Arp2/3 complex and mena for the stimulation of actin polymerization in growth cones by nerve growth factor.
J Neurosci Res. 2000 May 15;60(4):458-67. doi: 10.1002/(SICI)1097-4547(20000515)60:4<458::AID-JNR4>3.0.CO;2-Z.

引用本文的文献

1
Phase separation of microtubule-binding proteins - implications for neuronal function and disease.
J Cell Sci. 2024 Dec 15;137(24). doi: 10.1242/jcs.263470. Epub 2024 Dec 13.
2
Measuring Retrograde Actin Flow in Neuronal Growth Cones.
Methods Mol Biol. 2024;2831:265-282. doi: 10.1007/978-1-0716-3969-6_18.
3
CKAP5 enables formation of persistent actin bundles templated by dynamically instable microtubules.
Curr Biol. 2024 Jan 22;34(2):260-272.e7. doi: 10.1016/j.cub.2023.11.031. Epub 2023 Dec 11.
4
Actin cytoskeletal dynamics do not impose an energy drain on growth cone bioenergetics.
J Cell Sci. 2023 Aug 15;136(16). doi: 10.1242/jcs.261356. Epub 2023 Aug 18.
5
CLASP2 facilitates dynamic actin filament organization along the microtubule lattice.
Mol Biol Cell. 2023 Mar 1;34(3):br3. doi: 10.1091/mbc.E22-05-0149. Epub 2023 Jan 4.
6
Growth cone macropinocytosis of neurotrophin receptor and neuritogenesis are regulated by neuron navigator 1.
Mol Biol Cell. 2022 Jun 1;33(7):ar64. doi: 10.1091/mbc.E21-12-0623. Epub 2022 Mar 30.
7
Bridging the Gap: The Importance of TUBA1A α-Tubulin in Forming Midline Commissures.
Front Cell Dev Biol. 2022 Jan 19;9:789438. doi: 10.3389/fcell.2021.789438. eCollection 2021.
8
An Integrated Cytoskeletal Model of Neurite Outgrowth.
Front Cell Neurosci. 2018 Nov 26;12:447. doi: 10.3389/fncel.2018.00447. eCollection 2018.
10
Actin-based growth cone motility and guidance.
Mol Cell Neurosci. 2017 Oct;84:4-10. doi: 10.1016/j.mcn.2017.03.001. Epub 2017 Mar 6.

本文引用的文献

2
Tyrosine phosphorylation is required for actin-based motility of vaccinia but not Listeria or Shigella.
Curr Biol. 1999 Jan 28;9(2):89-92. doi: 10.1016/s0960-9822(99)80020-7.
4
Self-polarization and directional motility of cytoplasm.
Curr Biol. 1999 Jan 14;9(1):11-20. doi: 10.1016/s0960-9822(99)80042-6.
7
Spatial control of actin filament assembly: lessons from Listeria.
Cell. 1998 Dec 11;95(6):741-8. doi: 10.1016/s0092-8674(00)81697-9.
8
Visualization and molecular analysis of actin assembly in living cells.
J Cell Biol. 1998 Dec 28;143(7):1919-30. doi: 10.1083/jcb.143.7.1919.
10
The role of Saccharomyces cerevisiae coronin in the actin and microtubule cytoskeletons.
Curr Biol. 1998 Nov 19;8(23):1281-4. doi: 10.1016/s0960-9822(07)00539-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验