Suppr超能文献

Identification of P-glycoprotein mutations causing a loss of steroid recognition and transport.

作者信息

Vo Q D, Gruol D J

机构信息

Sidney Kimmel Cancer Center, San Diego, California 92121, USA.

出版信息

J Biol Chem. 1999 Jul 16;274(29):20318-27. doi: 10.1074/jbc.274.29.20318.

Abstract

P-glycoproteins transport a wide variety of hydrophobic compounds out of cells. While the diversity of transported molecules suggests a mechanism involving broad specificity, there is evidence of significant discrimination within given classes of molecules. One example of this behavior is transport of corticosteroids by the murine mdr1 P-glycoprotein. The presence of hydroxyl groups, associated with specific steroid carbon atoms, regulates the ability of corticosteroids to be transported. This specificity is demonstrated here by experiments measuring the ability of steroids to inhibit drug transport. The results indicate that a keto oxygen associated with the 3- and 20-carbon atoms, as well as a 17-carbon hydroxyl group, each acts to enhance steroidal P-glycoprotein inhibitory activity. Moreover, inhibitory steroids can be used for directed selection of variant cells, expressing mutated P-glycoproteins with a severely impaired ability to transport dexamethasone. The five mutations, reported here, are located within transmembrane domains 4-6, proximal to the cytoplasmic interface. The altered P-glycoproteins exhibit reduced capacity to be inhibited by specific steroids, suggesting decreased capacity to bind these molecules avidly. Studies comparing the relative inhibitory activity of a series of steroids indicate that these mutations alter recognition of the 17alpha-hydroxyl group and the 20-keto oxygen atom.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验