Suppr超能文献

Inhibition of beta(2)-adrenergic and muscarinic cholinergic receptor endocytosis after depletion of phosphatidylinositol bisphosphate.

作者信息

Sorensen S D, Linseman D A, McEwen E L, Heacock A M, Fisher S K

机构信息

Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

J Pharmacol Exp Ther. 1999 Aug;290(2):603-10.

Abstract

Recent evidence supporting a role for phosphoinositides in the endocytosis of phospholipase C-coupled receptors has prompted an investigation of whether there exists a similar requirement for the internalization of adenylyl cyclase-linked receptors. When 1321N1 astrocytoma cells, which possess both muscarinic cholinergic receptors (mAChRs) that couple to phospholipase C and beta-adrenergic receptors (beta(2)-ARs) linked to adenylyl cyclase, were pretreated with wortmannin (WT) at a concentration known to inhibit phosphatidylinositol 4-kinase activity, the labeling of both phosphatidylinositol 4-phosphate and phosphatidylinositol 4, 5-bisphosphate (PIP(2)) was reduced. Stimulation of phosphoinositide breakdown by activation of mAChRs in WT-pretreated cells led to a further depletion of PIP(2). As previously demonstrated for SH-SY5Y neuroblastoma, inclusion of WT inhibited the endocytosis of mAChRs in 1321N1 cells by >85%. In contrast, the internalization of beta(2)-ARs was only partially ( approximately 30%) prevented. However, when the concentration of PIP(2) was further reduced by exposure of WT-pretreated 1321N1 cells to a muscarinic agonist, the endocytosis of beta(2)-ARs was substantially inhibited (>70%). Lower concentrations of WT (100 nM) that were sufficient to fully inhibit phosphatidylinositol 3-kinase activity had no effect on either phosphoinositide synthesis or receptor endocytosis. The results indicate that the agonist-induced endocytosis of an adenylyl cyclase-linked receptor such as the beta(2)-AR, like that of the phospholipase C-coupled mAChR, is dependent on the synthesis of phosphoinositides and, in particular, that of PIP(2).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验