Pike M G, Martin Y N, Mays D C, Benson L M, Naylor S, Lipsky J J
Department of Pharmacology, Mayo Medical School, Mayo Clinic/Foundation, Rochester, MN 55905, USA.
Alcohol Clin Exp Res. 1999 Jul;23(7):1173-9.
The conversion of S-methyl-N,N-diethyldithiocarbamate (MeDDC) to MeDDC sulfine is the first step after methylation in the metabolic pathway of disulfiram, an alcohol deterrent, to its ultimate active metabolite. Various isoforms of CYP450 have recently been shown to catalyze this reaction, but the involvement of flavin monooxygenase (FMO) in this metabolism in humans has not been evaluated. In this study we examined the ability of recombinant human FMO3 in insect microsomes to metabolize MeDDC, and investigated the relative roles of FMO and CYP450 in the metabolism of MeDDC in human liver microsomes.
HPLC-mass spectrometry was used to identify the products of MeDDC formed by human liver microsomes and by recombinant human FMO3. MeDDC metabolism in human liver microsomes was studied by using either heat inactivation to inhibit FMO, or N-benzylimidazole (NBI) or antibodies to the CYP450 NADPH reductase to inhibit CYP450.
We confirmed by HPLC-mass spectrometry that MeDDC sulfine was the major product of MeDDC formed by human liver microsomes and by FMO3. Recombinant FMO3 was an efficient catalyst for the formation of MeDDC sulfine (5.3+/-0.2 nmol/min/mg, mean+/-SEM, n = 6). Inhibition studies showed MeDDC was metabolized primarily by CYP450 in human liver microsomes at pH 7.4, with a 10% contribution from FMO (total microsomal activity 3.1+/-0.2, n = 17). In the course of this work, methyl p-tolyl sulfide (MTS), sulfoxidation of which is used by some investigators as a specific probe for FMO activity, was found to be a substrate for both FMO and CYP450 in human liver microsomes.
Our results prove that MeDDC sulfine is the major product of MeDDC oxidation in human liver microsomes, MeDDC is a good substrate for human FMO3, and MeDDC is metabolized in human liver microsomes primarily by CYP450. We also showed that use of MTS sulfoxidation as an indicator of FMO activity in microsomes is valid only in the presence of a CYP450 inhibitor, such as NBI.
S-甲基-N,N-二乙基二硫代氨基甲酸盐(MeDDC)向MeDDC亚砜的转化是戒酒硫(一种酒精威慑剂)代谢途径中甲基化后的第一步,最终生成其活性代谢产物。最近研究表明,多种细胞色素P450同工酶可催化此反应,但尚未评估黄素单加氧酶(FMO)在人体该代谢过程中的作用。本研究中,我们检测了昆虫微粒体中重组人FMO3代谢MeDDC的能力,并研究了FMO和细胞色素P450在人肝微粒体中对MeDDC代谢的相对作用。
采用高效液相色谱-质谱联用技术鉴定人肝微粒体和重组人FMO3生成的MeDDC产物。通过热失活抑制FMO、或使用N-苄基咪唑(NBI)或细胞色素P450 NADPH还原酶抗体抑制细胞色素P450,研究人肝微粒体中MeDDC的代谢情况。
我们通过高效液相色谱-质谱联用技术证实,MeDDC亚砜是人肝微粒体和FMO3生成的MeDDC的主要产物。重组FMO3是生成MeDDC亚砜的高效催化剂(5.3±0.2 nmol/分钟/毫克,平均值±标准误,n = 6)。抑制研究表明,在pH 7.4条件下,人肝微粒体中的MeDDC主要由细胞色素P450代谢,FMO的贡献为10%(总微粒体活性3.1±0.2,n = 17)。在本研究过程中,发现对甲苯基甲基硫醚(MTS)(其亚砜氧化被一些研究人员用作FMO活性的特异性探针)是人肝微粒体中FMO和细胞色素P450的底物。
我们的结果证明,MeDDC亚砜是人肝微粒体中MeDDC氧化的主要产物,MeDDC是人类FMO3的良好底物,且在人肝微粒体中MeDDC主要由细胞色素P450代谢。我们还表明,仅在存在细胞色素P450抑制剂(如NBI)的情况下,使用MTS亚砜氧化作为微粒体中FMO活性的指标才有效。