Barnea A, Roberts J
Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235-9032, USA.
Brain Res Brain Res Protoc. 1999 Jul;4(2):156-64. doi: 10.1016/s1385-299x(99)00015-x.
Moscona, in the early sixties [A.A. Moscona, Recombination of dissociated cells and the development of cell aggregates, in: B.M. Willmer (Ed.), Cells and Tissues in Culture, Academic Press, New York, 1965, pp. 489-529.] [16], discovered that aggregation of dissociated cells is a property of embryonal cells. Several features of the aggregate culture system are particularly attractive for the conduct of biochemical and molecular studies on the human fetal brain. (i) All the pertinent procedural parameters can be readily controlled and standardized, resulting in a consistently reproducible system suitable for quantitative analyses. (ii) Neuronal enriched aggregates can be readily obtained, with minimal neurotoxicity. (iii) Aggregates can be easily harvested for biochemical and molecular studies. Aggregate cultures, generated from rodent fetal brains, have been extensively utilized as a tool to study regulation of aminergic neurons [P. Honegger, E. Richelson, Biochemical differentiation of mechanically dissociated brain in aggregating cell culture, Brain Res. 109 (1976) 335-354; P. Honegger, E. Richelson, Biochemical differentiation of aggregating cell cultures of different fetal rat brain regions, Brain Res. 133 (1977) 329-339.] [11,12] and peptidergic neurons (neuropeptide Y (NPY) and somatostatin (SRIF) [A. Barnea, E. Anthony, G. Lu, G. Cho, Morphological differentiation of neuropeptide Y neurons in aggregate cultures of dissociated fetal cortical cells: a model system for glia-neuron paracrine interactions, Brain Res. 625 (1993) 313-322; A. Barnea, G. Cho, G. Lu, M. Mathis, Brain-derived neurotrophic factor induces functional expression and phenotypic differentiation of cultured fetal neuropeptide Y producing neurons, J. Neurosci. Res. 42 (1995) 638-647; A. Barnea, A. Hajibeigi, G. Cho, P. Magni, Regulated production and secretion of immunoreactive neuropeptide Y by aggregating fetal brain cells in culture, Neuroendocrinology 54 (1991) 7-13; P. Magni, A. Barnea, Forskolin and phorbol ester stimulation of neuropeptide Y (NPY) production and secretion by aggregating fetal brain cells in culture: evidence for regulation of NPY biosynthesis at transcriptional and posttranscriptional levels, Endocrinology 130 (1992) 976-984.]) [4-6,14]. However, very few studies have utilized this system to study regulatory processes of human fetal neurons/glia [M. McCarthy, L. Resnik, F. Taub, R.V. Stewart, R.D. Dix, Infection of human neural cell aggregate cultures with a clinical isolate of cytomegalovirus, J. Neuropathol. Exp. Neurol. 50 (1991) 441-450; L. Pulliam, M.E. Berens, M.L. Rosenblum, A normal human brain cell aggregate model for neurobiological studies, J. Neurosci. Res. 21 (1988) 521-530.] [15,17]. In a series of studies in our laboratory [N. Aguila-Mansilla, A. Barnea, Human fetal brain cells in aggregate culture: a model system to study regulatory processes of the developing human neuropeptide Y (NPY) producing neuron, Int. J. Dev. Neurosci. 14 (1996) 531-539; A. Barnea, N. Aguila-Mansilla, H.T. Chute, A.A. Welcher, Comparison of neurotrophin regulation of human and rat neuropeptide Y (NPY) neurons: induction of NPY production in aggregate cultures derived from rat but not from human fetal brains, Brain Res. 732 (1996) 52-60; A. Barnea, N. Aguila-Mansilla, G. Lu, R.H. Ho, Opposite effects of astrocyte-derived soluble factor(s) on the functional expression of fetal peptidergic neurons in aggregate cultures: enhancement of neuropeptide Y and suppression of somatostatin, J. Neurosci. Res. 50 (1997) 605-617; A. Barnea, J. Roberts, R.H. Ho, Evidence for a synergistic effect of the HIV-1 envelope protein gp120 and brain-derived neurotrophic factor (BDNF) leading to enhanced expression of somatostatin neurons in aggregate cultures derived from the human fetal cortex, Brain Res. 815 (1999) 349-357.] [1-3,7], we have established a human-derived aggregate culture system, maintained in serum-free medium for up to 28 days, in which expression
莫斯科纳在20世纪60年代初[A.A.莫斯科纳,解离细胞的重组与细胞聚集体的发育,载于:B.M.威尔默(编),《培养中的细胞与组织》,学术出版社,纽约,1965年,第489 - 529页。][16]发现,解离细胞的聚集是胚胎细胞的一种特性。聚集体培养系统的几个特点对于开展关于人类胎儿大脑的生化和分子研究特别有吸引力。(i)所有相关的程序参数都可以很容易地控制和标准化,从而形成一个始终可重复的系统,适用于定量分析。(ii)可以很容易地获得富含神经元的聚集体,且神经毒性最小。(iii)聚集体可以很容易地收获用于生化和分子研究。源自啮齿动物胎儿大脑的聚集体培养物已被广泛用作研究胺能神经元调节的工具[P.霍内格,E.里克尔森,聚集细胞培养中机械解离脑的生化分化,《脑研究》109(1976)335 - 354;P.霍内格,E.里克尔森,不同胎鼠脑区聚集细胞培养的生化分化,《脑研究》13(1977)329 - 339。][11,12]和肽能神经元(神经肽Y(NPY)和生长抑素(SRIF)[A.巴尼亚,E.安东尼,G.卢,G.赵,解离胎儿皮质细胞聚集体培养中神经肽Y神经元的形态分化:神经胶质 - 神经元旁分泌相互作用的模型系统,《脑研究》625(1993)313 - 322;A.巴尼亚,G.赵,G.卢,M.马西斯,脑源性神经营养因子诱导培养的胎儿神经肽Y产生神经元的功能表达和表型分化,《神经科学研究杂志》42(1995)638 - 647;A.巴尼亚,A.哈吉贝吉,G.赵,P.马尼,培养中聚集的胎儿脑细胞对免疫反应性神经肽Y的调节产生和分泌,《神经内分泌学》54(1991)7 - 13;P.马尼,A.巴尼亚,福斯可林和佛波酯对培养中聚集的胎儿脑细胞神经肽Y(NPY)产生和分泌的刺激:NPY生物合成在转录和转录后水平调控的证据,《内分泌学》130(1992)976 - 984。])[4 - 6,14]。然而,很少有研究利用这个系统来研究人类胎儿神经元/神经胶质的调节过程[M.麦卡锡,L.雷斯尼克,F.陶布,R.V.斯图尔特,R.D.迪克斯,用巨细胞病毒临床分离株感染人类神经细胞聚集体培养物,《神经病理学与实验神经病学杂志》50(1991)441 - 450;L.普利厄姆,M.E.贝伦斯,M.L.罗森布卢姆,用于神经生物学研究的正常人脑细胞聚集体模型,《神经科学研究杂志》21(1988)521 - 530。][15,17]。在我们实验室的一系列研究中[N.阿吉拉 - 曼西利亚,A.巴尼亚,聚集培养中的人类胎儿脑细胞:研究发育中的人类神经肽Y(NPY)产生神经元调节过程的模型系统,《国际发育神经科学杂志》14(1996)531 - 539;A.巴尼亚,N.阿吉拉 - 曼西利亚,H.T.丘特,A.A.韦尔彻,神经营养因子对人类和大鼠神经肽Y(NPY)神经元调节的比较:在源自大鼠而非人类胎儿大脑的聚集体培养物中诱导NPY产生,《脑研究》732(1996)52 - 60;A.巴尼亚,N.阿吉拉 - 曼西利亚,G.卢,R.H.何,星形胶质细胞衍生的可溶性因子对聚集体培养中胎儿肽能神经元功能表达的相反作用:增强神经肽Y并抑制生长抑素,《神经科学研究杂志》50(1997)605 - 617;A.巴尼亚,J.罗伯茨,R.H.何,HIV - 1包膜蛋白gp120和脑源性神经营养因子(BDNF)协同作用导致源自人类胎儿皮质的聚集体培养物中生长抑素神经元表达增强的证据,《脑研究》815(1999)349 - 357。][1 - 3,7],我们建立了一种源自人类的聚集体培养系统,在无血清培养基中维持长达28天,其中表达