Campbell I L, Krucker T, Steffensen S, Akwa Y, Powell H C, Lane T, Carr D J, Gold L H, Henriksen S J, Siggins G R
Department of Neuropharmacology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
Brain Res. 1999 Jul 17;835(1):46-61. doi: 10.1016/s0006-8993(99)01328-1.
Cytokines belonging to the type I interferon (e.g. interferon-alpha) family are important in the host response to infection and may have complex and broad ranging actions in the central nervous system (CNS) that may be beneficial or harmful. To better understand the impact of the CNS expression of the type I interferons (IFN), transgenic mice were developed that produce IFN-alpha(1) chronically from astrocytes. In two independent transgenic lines with moderate and low levels of astrocyte IFN-alpha mRNA expression respectively, a spectrum of transgene dose- and age-dependent structural and functional neurological alterations are induced. Structural changes include neurodegeneration with loss of cholinergic neurons, gliosis, angiopathy with mononuclear cell cuffing, progressive calcification affecting basal ganglia and cerebellum and the up-regulation of a number of IFN-alpha-regulated genes. At a functional level, in vivo and in vitro electrophysiological studies revealed impaired neuronal function and disturbed synaptic plasticity with pronounced hippocampal hyperexcitability. Severe behavioral alterations were also evident in higher expressor GFAP-IFNalpha mice which developed fatal seizures around 13 weeks of age precluding their further behavioral assessment. Modest impairments in discrimination learning were measured in lower expressor GFAP-IFNalpha mice at various ages (7-42 weeks). The behavioral and electrophysiological findings suggest regional changes in hippocampal excitability which may be linked to abnormal calcium metabolism and loss of cholinergic neurons in the GIFN mice. Thus, these transgenic mice provide a novel animal model in which to further evaluate the mechanisms that underlie the diverse actions of type I interferons in the intact CNS and to link specific structural changes with functional impairments.
属于I型干扰素(如α-干扰素)家族的细胞因子在宿主对感染的反应中很重要,并且可能在中枢神经系统(CNS)中具有复杂且广泛的作用,这些作用可能是有益的或有害的。为了更好地理解I型干扰素(IFN)在CNS中的表达影响,构建了从星形胶质细胞长期产生α-干扰素(1)的转基因小鼠。在两个分别具有中等和低水平星形胶质细胞IFN-α mRNA表达的独立转基因品系中,诱导了一系列转基因剂量和年龄依赖性的结构和功能神经学改变。结构变化包括胆碱能神经元丧失导致的神经变性、胶质细胞增生、伴有单核细胞套叠的血管病变、影响基底神经节和小脑的进行性钙化以及一些IFN-α调节基因的上调。在功能水平上,体内和体外电生理研究显示神经元功能受损和突触可塑性紊乱,伴有明显的海马兴奋性过高。在较高表达的GFAP-IFNα小鼠中也明显出现严重的行为改变,这些小鼠在13周龄左右出现致命性癫痫发作,无法进行进一步的行为评估。在不同年龄(7-42周)的低表达GFAP-IFNα小鼠中测量到辨别学习有适度损伤。行为和电生理结果表明海马兴奋性存在区域变化,这可能与GIFN小鼠中异常的钙代谢和胆碱能神经元丧失有关。因此,这些转基因小鼠提供了一种新的动物模型,可用于进一步评估I型干扰素在完整CNS中多种作用的潜在机制,并将特定的结构变化与功能损伤联系起来。