Cioni P, Strambini G B
Istituto di Biofisica, Via S. Lorenzo, 26, Pisa, 56127, Italy.
J Mol Biol. 1999 Aug 27;291(4):955-64. doi: 10.1006/jmbi.1999.3010.
Pressure is an effective modulator of protein structure and biological function. The influence of hydrostatic pressure (</=3 kbar, 10-50 degrees C) on conformational dynamics was assessed from the rate of migration of acrylamide through the protein interior. Migration rates in apoazurin, alcohol dehydrogenase and alkaline phosphatase were obtained from the phosphorescence quenching rate constant (kq) of the deeply buried Trp residues. The dominant effect of applied pressure is to slow the diffusion process, although at low temperature, high pressure may also accelerate it. For apoazurin, alcohol dehydrogenase and alkaline phosphatase the activation free volumes, DeltaV(obs), derived from the pressure-dependence of kq, ranges from +10, +16 and +20 ml mol(-1)at 50 degrees C to -20, +5 and 0 ml mol(-1)at 10 degrees C, respectively. Analysing DeltaV(obs) in terms of a positive contribution from cavity expansion and a negative one from peptide hydration, the results emphasise that whereas at warm temperature the formation of cavities plays a dominant role in the migration process, at low temperature the required flexibility may be conferred by internal protein hydration. The relatively small magnitude of both DeltaV(obs) and the activation enthalpy (DeltaH=10-20 kcal mol(-1)) indicates that acrylamide diffusion jumps inside these proteins appear to involve relatively small amplitude structural fluctuations not requiring major unfolding-like transitions. The implication of these findings for the thermodynamic stability of proteins under pressure is discussed.
压力是蛋白质结构和生物学功能的有效调节剂。通过丙烯酰胺在蛋白质内部的迁移速率评估了静水压力(≤3千巴,10 - 50摄氏度)对构象动力学的影响。脱辅基铜蓝蛋白、乙醇脱氢酶和碱性磷酸酶中的迁移速率是从深埋色氨酸残基的磷光猝灭速率常数(kq)获得的。施加压力的主要作用是减缓扩散过程,不过在低温下,高压也可能加速扩散。对于脱辅基铜蓝蛋白、乙醇脱氢酶和碱性磷酸酶,由kq的压力依赖性得出的活化自由体积ΔV(obs),在50摄氏度时分别为 +10、+16和 +20毫升摩尔⁻¹,在10摄氏度时分别为 -20、+5和0毫升摩尔⁻¹。从空穴扩张的正贡献和肽水合的负贡献来分析ΔV(obs),结果强调,在温暖温度下,空穴形成在迁移过程中起主导作用,而在低温下,所需的灵活性可能由蛋白质内部水合作用赋予。ΔV(obs)和活化焓(ΔH = 10 - 20千卡摩尔⁻¹)的相对较小值表明,丙烯酰胺在这些蛋白质内部的扩散跳跃似乎涉及相对较小幅度的结构波动,不需要类似重大解折叠的转变。讨论了这些发现对压力下蛋白质热力学稳定性的影响。