Suppr超能文献

过氧亚硝酸盐与还原型烟酰胺核苷酸的反应,过氧化氢的形成。

Reaction of peroxynitrite with reduced nicotinamide nucleotides, the formation of hydrogen peroxide.

作者信息

Kirsch M, de Groot H

机构信息

Institut für Physiologische Chemie, Universitätsklinikum, Hufelandstrasse 55, D-45122 Essen, Germany.

出版信息

J Biol Chem. 1999 Aug 27;274(35):24664-70. doi: 10.1074/jbc.274.35.24664.

Abstract

NAD(P)H acts as a two-electron reductant in physiological, enzyme-controlled processes. Under nonenzymatic conditions, a couple of one-electron oxidants easily oxidize NADH to the NAD(.) radical. This radical reduces molecular oxygen to the superoxide radical (O-(2)) at a near to the diffusion-controlled rate, thereby subsequently forming hydrogen peroxide (H(2)O(2)). Because peroxynitrite can act as a one-electron oxidant, the reaction of NAD(P)H with both authentic peroxynitrite and the nitric oxide ((. )NO) and O-(2) releasing compound 3-morpholinosydnonimine N-ethylcarbamide (SIN-1) was studied. Authentic peroxynitrite oxidized NADH with an efficiency of approximately 25 and 8% in the absence and presence of bicarbonate/carbon dioxide (HCO(3)(-)/CO(2)), respectively. NADH reacted 5-100 times faster with peroxynitrite than do the known peroxynitrite scavengers glutathione, cysteine, and tryptophan. Furthermore, NADH was found to be highly effective in suppressing peroxynitrite-mediated nitration reactions even in the presence of HCO(3)(-)/CO(2). Reaction of NADH with authentic peroxynitrite resulted in the formation of NAD(+) and O-(2) and, thus, of H(2)O(2) with yields of about 3 and 10% relative to the added amounts of peroxynitrite and NADH, respectively. Peroxynitrite generated in situ from SIN-1 gave virtually the same results; however, two remarkable exceptions were recognized. First, the efficiency of NADH oxidation increased to 60-90% regardless of the presence of HCO(3)(-)/CO(2), along with an increase of H(2)O(2) formation to about 23 and 35% relative to the amounts of added SIN-1 and NADH. Second, and more interesting, the peroxynitrite scavenger glutathione (GSH) was needed in a 75-fold surplus to inhibit the SIN-1-dependent oxidation of NADH half-maximal in the presence of HCO(3)(-)/CO(2). Similar results were obtained with NADPH. Hence, peroxynitrite or radicals derived from it (such as, e.g. the bicarbonate radical or nitrogen dioxide) indeed oxidize NADH, leading to the formation of NAD(+) and, via O-(2), of H(2)O(2). When peroxynitrite is generated in situ in the presence of HCO(3)(-)/CO(2), i.e. under conditions mimicking the in vivo situation, NAD(P)H effectively competes with other known scavengers of peroxynitrite.

摘要

在生理的、酶控制的过程中,NAD(P)H作为双电子还原剂。在非酶促条件下,一些单电子氧化剂很容易将NADH氧化为NAD(·)自由基。该自由基以接近扩散控制的速率将分子氧还原为超氧自由基(O₂⁻),进而随后形成过氧化氢(H₂O₂)。由于过氧亚硝酸根可作为单电子氧化剂,因此研究了NAD(P)H与纯过氧亚硝酸根以及一氧化氮(·NO)和释放O₂的化合物3-吗啉代 sydnonimine N-乙基碳酰胺(SIN-1)的反应。在不存在和存在碳酸氢盐/二氧化碳(HCO₃⁻/CO₂)的情况下,纯过氧亚硝酸根氧化NADH的效率分别约为25%和8%。NADH与过氧亚硝酸根的反应速度比已知的过氧亚硝酸根清除剂谷胱甘肽、半胱氨酸和色氨酸快5至100倍。此外,发现即使在存在HCO₃⁻/CO₂的情况下,NADH在抑制过氧亚硝酸根介导的硝化反应方面也非常有效。NADH与纯过氧亚硝酸根反应生成NAD⁺和O₂,从而生成H₂O₂,相对于添加的过氧亚硝酸根和NADH的量,产率分别约为3%和10%。由SIN-1原位生成的过氧亚硝酸根给出了几乎相同的结果;然而,发现了两个明显的例外。首先,无论是否存在HCO₃⁻/CO₂,NADH氧化效率均提高到60%至90%,同时相对于添加的SIN-1和NADH的量,H₂O₂生成量增加到约23%和35%。其次,更有趣的是,在存在HCO₃⁻/CO₂的情况下,过氧亚硝酸根清除剂谷胱甘肽(GSH)需要过量75倍才能半最大程度抑制SIN-1依赖的NADH氧化。用NADPH也得到了类似的结果。因此,过氧亚硝酸根或其衍生的自由基(例如碳酸氢根自由基或二氧化氮)确实会氧化NADH,导致生成NAD⁺,并通过O₂生成H₂O₂。当过氧亚硝酸根在存在HCO₃⁻/CO₂的情况下原位生成时,即在模拟体内情况的条件下,NAD(P)H有效地与其他已知的过氧亚硝酸根清除剂竞争。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验